Abstract

We propose and demonstrate a new method for evaluating the afterpulsing effect in single-photon avalanche photodiodes (SPADs). By analyzing the statistical property of dark count rate, we can quantitatively characterize afterpulsing probability (APP) of a SPAD. In experiment, the temperature-dependent low dark count rate (DCR) distribution becomes non-Poissonian at lower temperature and has higher excess bias as the afterpulsing effect becomes significant. Our work provides a flexible way to examine APP in either single-device or circuit level.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

Shingo Mandai, Matthew W. Fishburn, Yuki Maruyama, and Edoardo Charbon
Opt. Express 20(6) 5849-5857 (2012)

Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration

Pengfei Sun, Ryoichi Ishihara, and Edoardo Charbon
Opt. Express 24(4) 3734-3748 (2016)

A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription