Abstract

We show how to optically connect guiding layers at different elevations in a 3-D integrated photonic circuit. Transfer of optical power carried by planar, semi-guided waves is possible without reflections or radiation losses, and over large vertical distances. This functionality is realized through simple step-like folds of high-contrast dielectric slab waveguides, in combination with oblique wave incidence, and fulfilling a resonance condition. Radiation losses vanish, and polarization conversion is suppressed for TE wave incidence beyond certain critical angles. This can be understood by fundamental arguments resting on a version of Snell’s law. The two 90° corners of a step act as identical partial reflectors in a Fabry–Perot-like resonator setup. By selecting the step height, i.e., the distance between the reflectors, one realizes resonant states with full transmission. Rigorous quasi-analytical simulations for typical silicon/silica parameters demonstrate the functioning. Combinations of several step junctions can lead to other types of optical on-chip connects, e.g., U-turn- or bridge-like configurations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric based resonant guided wave networks

Eyal Feigenbaum and Harry A. Atwater
Opt. Express 20(10) 10674-10683 (2012)

Accurate first-order leaky-wave analysis of antiresonant reflecting optical waveguides

Meng-Huei Sheng and Hung-Wen Chang
Appl. Opt. 44(5) 751-764 (2005)

Analysis of grating couplers in planar waveguides for waves at oblique incidence

Marek T. Wlodarczyk and S. R. Seshadri
J. Opt. Soc. Am. A 2(2) 171-185 (1985)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription