Abstract

We report, to the best of our knowledge, the first experimental characterization of spectral coherence properties of wavelength conversion inside photonic crystal fibers with two zero-dispersion wavelengths (TZDWs) and demonstrate a low-noise femtosecond 1.3-μm source employing the TZDW fiber and a 1.3-W, 240-fs Yb:fiber amplifier as the seeding source. Theoretical investigation shows that pulse evolution in our TZDW fiber source is dominated by parametric amplification seeded by self-phase modulation broadening which efficiently converts the pump energy into two new wavelength bands in a deterministic manner, leading to low noise and coherent excitation of femtosecond pulses tunable in the 1.3-μm spectral region, with up to 3 nJ of pulse energy at 32% of conversion efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-resolution optical coherence tomography at 1.15 μm using photonic crystal fiber with no zero-dispersion wavelengths

Hui Wang, Christine P. Fleming, and Andrew M. Rollins
Opt. Express 15(6) 3085-3092 (2007)

Tunable, femtosecond pulse source operating in the range 1.06–1.33 µm based on an Yb3+-doped holey fiber amplifier

J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson
J. Opt. Soc. Am. B 19(6) 1286-1294 (2002)

References

  • View by:
  • |
  • |
  • |

  1. G. Genty, S. Coen, and J. M. Dudley, J. Opt. Soc. Am. B 24, 1771 (2007).
    [Crossref]
  2. N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
    [Crossref]
  3. J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, Opt. Lett. 39, 2060 (2014).
    [Crossref]
  4. H. Tu and S. A. Boppart, Opt. Express 17, 9858 (2009).
    [Crossref]
  5. H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, Opt. Lett. 38, 4927 (2013).
    [Crossref]
  6. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
    [Crossref]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref]
  8. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  9. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, Opt. Express 12, 1045 (2004).
    [Crossref]
  10. Y. Yao and W. H. Knox, Opt. Express 20, 25275 (2012).
    [Crossref]
  11. Y. Yao and W. H. Knox, Opt. Express 21, 26612 (2013).
    [Crossref]
  12. Y. Yao and W. H. Knox, Opt. Express 23, 536 (2015).
    [Crossref]
  13. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, Opt. Express 17, 13354 (2009).
    [Crossref]
  14. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, Opt. Express 14, 1145 (2006).
    [Crossref]
  15. Y. Deng and W. H. Knox, Opt. Lett. 29, 2121 (2004).
    [Crossref]
  16. Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
    [Crossref]
  17. M. Frosz, P. Falk, and O. Bang, Opt. Express 13, 6181 (2005).
    [Crossref]
  18. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, Opt. Express 16, 11954 (2008).
    [Crossref]
  19. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, Opt. Express 12, 3471 (2004).
    [Crossref]
  20. W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, Opt. Express 21, 11215 (2013).
    [Crossref]
  21. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  22. F. Lu and W. H. Knox, Opt. Express 12, 347 (2004).
    [Crossref]
  23. J. W. Nicholson, A. D. Yablon, M. F. Yan, P. Wisk, R. Bise, D. J. Trevor, J. Alonzo, T. Stockert, J. Fleming, E. Monberg, F. Dimarcello, and J. Fini, Opt. Lett. 33, 2038 (2008).
    [Crossref]

2015 (1)

2014 (1)

2013 (4)

2012 (2)

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Y. Yao and W. H. Knox, Opt. Express 20, 25275 (2012).
[Crossref]

2009 (2)

2008 (3)

2007 (1)

2006 (2)

2005 (1)

2004 (4)

2003 (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Aguirre, A.

Alonzo, J.

Andersen, T.

Bang, O.

Bise, R.

Boppart, S. A.

Chai, L.

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Chang, G.

Charan, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Chen, H.-W.

Cheng, J.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Churin, D.

N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
[Crossref]

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, J. Opt. Soc. Am. B 24, 1771 (2007).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Deng, Y.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Dimarcello, F.

Dudley, J. M.

G. Genty, S. Coen, and J. M. Dudley, J. Opt. Soc. Am. B 24, 1771 (2007).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Durst, M. E.

Falk, P.

Fini, J.

Fleming, J.

Frosz, M.

Frosz, M. H.

Fujimoto, J.

Gao, J.

Genty, G.

Grüner-Nielsen, L.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Haider, Z.

Hansen, K.

Hilligsøe, K. M.

Hu, M.

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Jakobsen, D.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Kaivola, M.

Kärtner, F. X.

Keiding, S.

Khanh, K.

N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
[Crossref]

Knox, W. H.

Kobat, D.

Kopf, D.

Kristiansen, R.

Larsen, J.

Lederer, M.

Lehtonen, M.

Li, Y.

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Lim, J.

Liu, B.

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Lu, F.

Ludvigsen, H.

Luo, J.

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Miyawaki, M.

N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
[Crossref]

Mølmer, K.

Monberg, E.

Moselund, P. M.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Nicholson, J. W.

Nielsen, C.

Nishimura, N.

Nishizawa, N.

Ota, T.

N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
[Crossref]

Paulsen, H.

Pedersen, M. E. V.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Peyghambarian, N.

N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
[Crossref]

Schaffer, C. B.

Seitz, W.

Stockert, T.

Tang, P.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Thanh Nam, N.

N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
[Crossref]

Thomsen, C. L.

Tong, W.

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Trevor, D. J.

Tu, H.

Wang, C.

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Wang, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Wang, W.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Wisk, P.

Wong, A. W.

Xu, C.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, Opt. Express 17, 13354 (2009).
[Crossref]

Xu, S.

Yablon, A. D.

Yan, M. F.

Yang, H.

Yang, Z.

Yao, Y.

Zhao, C.

Acta Opt. Sin. (1)

Y. Yao, Y. Li, B. Liu, M. Hu, L. Chai, C. Wang, W. Tong, and J. Luo, Acta Opt. Sin. 28, 1384 (2008).
[Crossref]

Appl. Phys. Lett. (1)

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. Thanh Nam, K. Khanh, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, IEEE Photon. Technol. Lett. 25, 1893 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (12)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Other (1)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of the TZDW fiber source and subsequent coherence measurement system. HR, high reflector; ISO, isolator; WDM, wavelength division multiplexer; LD, laser diode; SMF, single-mode fiber; QWP, quarter wave plate; HWP, half-wave plate; TFB, taper fiber bundle; DS, delay stage; PBS, polarizing beam splitter; LWP, long-wave pass filter; POL, polarizer.

Fig. 2.
Fig. 2.

(a) Measured output spectra of the oscillator, pre-amplifier, and power amplifier (spectral intensity normalized to 1, 1.5, and 2, respectively). Inset: measured autocorrelation trace (solid line) of the compressed MOPA output and calculated autocorrelation trace of the transform-limited pulse (dotted line). (b) Calculated dispersion profile of the TZDW PCF; the dotted line indicates zero dispersion wavelengths. (c) Power-dependent phase-matched four-wave mixing bands of the PCF. (d) Phase-matched Cherenkov radiation bands of the PCF.

Fig. 3.
Fig. 3.

Simulated spectrograms after propagation of (a) 45 mm, (b) 60 mm, (c) 80 mm, (d) 150 mm in the TZDW PCF for a 240-fs Gaussian input pulse at 1035 nm with 15 kW of peak power.

Fig. 4.
Fig. 4.

(a) Measured TZDW PCF spectra (log scale) as a function of pump pulse energy. (b) Measured spectra (linear scale) and pulse energies of the filtered Stokes pulses as a function of pump energy. Inset: autocorrelation trace of the 1260-nm Stokes pulse.

Fig. 5.
Fig. 5.

(a) Measured spectral interferograms at 6 nJ and 8.7 nJ of pump pulse energy, respectively. (b) Measured average mutual coherence as a function of pump energy and its corresponding soliton order. (c) Measured RF noise spectra of the pre-amplifier output (green), Yb:fiber MOPA output (blue), and Stokes pulse (red) normalized to their carrier powers at first-harmonic frequency.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( ω , t ) = | E ( τ ) g ( τ t ) exp ( i ω τ ) d τ | 2 .
| g 12 ( λ , t 1 t 2 ) | = | E 1 * ( λ , t 1 ) E 2 ( λ , t 2 ) | E 1 ( λ , t 1 ) | 2 | E 2 ( λ , t 2 ) | 2 | ,

Metrics