Abstract

We demonstrate non-contact remote photoacoustic spectroscopy in the mid-infrared region. A room-temperature-operated pulsed external-cavity quantum cascade laser is used to excite photoacoustic waves within a semitransparent sample. The ultrasonic waves are detected remotely on the opposite side of the sample using a fiber-optic Mach–Zehnder interferometer, thereby avoiding problems associated with acoustic attenuation in air. We present the theoretical background of the proposed technique and demonstrate measurements on a thin polystyrene film. The obtained absorption spectrum in the region of 10301230cm1 is compared to a spectrum obtained by attenuated total reflection, showing reasonable agreement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared photoacoustic spectroscopy of solids using an external-cavity quantum-cascade laser

Qing Wen and Kirk H. Michaelian
Opt. Lett. 33(16) 1875-1877 (2008)

Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser

Anton Hasenkampf, Niels Kröger, Arthur Schönhals, Wolfgang Petrich, and Annemarie Pucci
Opt. Express 23(5) 5670-5680 (2015)

Recent advances in mid infrared (3-5µm) Quantum Cascade Lasers

Manijeh Razeghi, Neelanjan Bandyopadhyay, Yanbo Bai, Quanyong Lu, and Steven Slivken
Opt. Mater. Express 3(11) 1872-1884 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Coufal, Fresenius Z. Anal. Chem. 324, 456 (1986).
    [Crossref]
  2. X. Guo, A. Mandelis, and B. Zinman, J. Biophotonics 6, 911 (2012).
  3. R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
    [Crossref]
  4. J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
    [Crossref]
  5. Y. Yao, Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
    [Crossref]
  6. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, and D. A. Newnham, J. Opt. Soc. Am. B 20, 1761 (2003).
    [Crossref]
  7. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
    [Crossref]
  8. T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, Opt. Lett. 35, 4151 (2010).
    [Crossref]
  9. A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, Biomed. Opt. Express 4, 2322 (2013).
    [Crossref]
  10. M. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
    [Crossref]
  11. G. Langer, K.-D. Bouchal, H. Grün, P. Burgholzer, and T. Berer, Opt. Express 21, 22410 (2013).
    [Crossref]
  12. M. Brandstetter and B. Lendl, Sens. Actuators B 170, 189 (2010).
    [Crossref]
  13. J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2001), p. 4000.
  14. G. Ramer and B. Lendl, Encyclopedia of Analytical Chemistry (Wiley, 2013).
  15. E. Leiss-Holzinger, J. Bauer-Marschallinger, A. Hochreiner, P. Hollinger, and T. Berer, “Dual modality non-contact photoacoustic and spectral domain OCT imaging,” Ultrasonic Imaging, doi: 10.1177/0161734615582003 (to be published).
  16. F. Lu and M. A. Belkin, Opt. Express 19, 19942 (2011).
    [Crossref]

2014 (1)

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

2013 (2)

2012 (3)

Y. Yao, Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

X. Guo, A. Mandelis, and B. Zinman, J. Biophotonics 6, 911 (2012).

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

2006 (1)

M. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

2003 (1)

1986 (1)

H. Coufal, Fresenius Z. Anal. Chem. 324, 456 (1986).
[Crossref]

Bauer-Marschallinger, J.

A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, Biomed. Opt. Express 4, 2322 (2013).
[Crossref]

E. Leiss-Holzinger, J. Bauer-Marschallinger, A. Hochreiner, P. Hollinger, and T. Berer, “Dual modality non-contact photoacoustic and spectral domain OCT imaging,” Ultrasonic Imaging, doi: 10.1177/0161734615582003 (to be published).

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Belkin, M. A.

Berer, T.

G. Langer, K.-D. Bouchal, H. Grün, P. Burgholzer, and T. Berer, Opt. Express 21, 22410 (2013).
[Crossref]

A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, Biomed. Opt. Express 4, 2322 (2013).
[Crossref]

T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, Opt. Lett. 35, 4151 (2010).
[Crossref]

E. Leiss-Holzinger, J. Bauer-Marschallinger, A. Hochreiner, P. Hollinger, and T. Berer, “Dual modality non-contact photoacoustic and spectral domain OCT imaging,” Ultrasonic Imaging, doi: 10.1177/0161734615582003 (to be published).

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Bouchal, K.-D.

Brandstetter, M.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

M. Brandstetter and B. Lendl, Sens. Actuators B 170, 189 (2010).
[Crossref]

Burgholzer, P.

Chalmers, J. M.

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2001), p. 4000.

Coufal, H.

H. Coufal, Fresenius Z. Anal. Chem. 324, 456 (1986).
[Crossref]

Duxbury, G.

Faist, J.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Farahi, R. H.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Gmachl, C. F.

Y. Yao, Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Griffiths, P. R.

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2001), p. 4000.

Grün, H.

Guo, X.

X. Guo, A. Mandelis, and B. Zinman, J. Biophotonics 6, 911 (2012).

Hochreiner, A.

A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, Biomed. Opt. Express 4, 2322 (2013).
[Crossref]

T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, Opt. Lett. 35, 4151 (2010).
[Crossref]

E. Leiss-Holzinger, J. Bauer-Marschallinger, A. Hochreiner, P. Hollinger, and T. Berer, “Dual modality non-contact photoacoustic and spectral domain OCT imaging,” Ultrasonic Imaging, doi: 10.1177/0161734615582003 (to be published).

Hoffman, A. J.

Y. Yao, Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Hollinger, P.

E. Leiss-Holzinger, J. Bauer-Marschallinger, A. Hochreiner, P. Hollinger, and T. Berer, “Dual modality non-contact photoacoustic and spectral domain OCT imaging,” Ultrasonic Imaging, doi: 10.1177/0161734615582003 (to be published).

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Jakoby, B.

Langer, G.

Langford, N.

Leiss-Holzinger, E.

E. Leiss-Holzinger, J. Bauer-Marschallinger, A. Hochreiner, P. Hollinger, and T. Berer, “Dual modality non-contact photoacoustic and spectral domain OCT imaging,” Ultrasonic Imaging, doi: 10.1177/0161734615582003 (to be published).

Lendl, B.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

M. Brandstetter and B. Lendl, Sens. Actuators B 170, 189 (2010).
[Crossref]

G. Ramer and B. Lendl, Encyclopedia of Analytical Chemistry (Wiley, 2013).

Lewicki, R.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

Lu, F.

Mandelis, A.

X. Guo, A. Mandelis, and B. Zinman, J. Biophotonics 6, 911 (2012).

McCulloch, M. T.

Moser, H.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

Newnham, D. A.

Normand, E. L.

Passian, A.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Ramer, G.

G. Ramer and B. Lendl, Encyclopedia of Analytical Chemistry (Wiley, 2013).

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Tetard, L.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Thundat, T.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Tittel, F. K.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

Waclawek, J. P.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

Wang, L. V.

M. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Xu, M.

M. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Yao, Y.

Y. Yao, Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Y. Yao, Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Zamiri, S.

Zinman, B.

X. Guo, A. Mandelis, and B. Zinman, J. Biophotonics 6, 911 (2012).

Appl. Phys. B (1)

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Biomed. Opt. Express (1)

Fresenius Z. Anal. Chem. (1)

H. Coufal, Fresenius Z. Anal. Chem. 324, 456 (1986).
[Crossref]

J. Biophotonics (1)

X. Guo, A. Mandelis, and B. Zinman, J. Biophotonics 6, 911 (2012).

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Nat. Photonics (1)

Y. Yao, Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Sens. Actuators B (1)

M. Brandstetter and B. Lendl, Sens. Actuators B 170, 189 (2010).
[Crossref]

Other (3)

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2001), p. 4000.

G. Ramer and B. Lendl, Encyclopedia of Analytical Chemistry (Wiley, 2013).

E. Leiss-Holzinger, J. Bauer-Marschallinger, A. Hochreiner, P. Hollinger, and T. Berer, “Dual modality non-contact photoacoustic and spectral domain OCT imaging,” Ultrasonic Imaging, doi: 10.1177/0161734615582003 (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the setup with component labels given as: QCL, quantum cascade laser; FL, fiber laser; LIA, lock-in amplifier; BD, balanced photo detector; OA, optical amplifier; Col, fiber collimator; L1,2, lenses; C, circulator.

Fig. 2.
Fig. 2.

(a) Light from the QCL (left, red) is absorbed in a sample. The intensity as a function over depth is indicated above the sample. Ultrasonic waves are detected at the opposite side (right, green). (b) Resulting pressure over time for a sample thickness of 250 μm and different absorption coefficients neglecting reflections. (c) Spectral components of the time traces in (b). (d) Spectral components taking the pulse length of the excitation pulse into account. (e) Spectral components for a repetitive excitation with a pulse train for μ = 5 × 10 3 m 1 (blue) and envelope functions for the other absorption values. (f) Amplitudes evaluated at 100 kHz over absorption coefficient μ for different sample thicknesses.

Fig. 3.
Fig. 3.

Remote photo-acoustic measurement (blue solid line) of a polystyrene film and absorption data obtained from ATR (red dashed line) versus wavenumber. The measurements show reasonable agreement.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

p 0 = β v 2 c p μ F = Γ μ F ,
p 0 ( z ) = Γ μ F exp ( μ z ) .
p ( t ) μ · e μ d · e μ v t θ ( d / v t ) θ ( t ) ,
p ( f ) μ e i 2 π f d / v e μ d 2 π ( μ v i 2 π f ) .
p tr ( ω ) p ( ω ) n = 0 N 1 e i ω · n / f R ,
p ( f R = 100 kHz ) 1 e μ d v .
p bs ( ω ) = p ( ω ) p * ( ω ) · χ · e i ω 2 d / v ,
p mr ( ω ) = p bs ( ω ) m e 2 i ω d · m / v · χ 2 m .

Metrics