Abstract

In the twilight-field method for obtaining interference fringes with high contrast in in-line digital holography, only the intensity of the reference light is regulated to be close to the intensity of the object light, which is the ultra-weak scattered light from a nanoparticle, by using a low-frequency attenuation filter. Coherence of the light also strongly affects the contrast of the interference fringes. High coherence causes a lot of undesired coherent noise, which masks the fringes derived from the nanoparticles. Too-low coherence results in fringes with low contrast and a correspondingly low signal-to-noise ratio. Consequently, proper regulation of the coherence of the light source, in this study the spectral width, improves the minimum detectable size in holographic three-dimensional position measurement of nanoparticles. By using these methods, we were able to measure the position of a gold nanoparticle with a minimum diameter of 20 nm.

Full Article  |  PDF Article
OSA Recommended Articles
Digital holographic microscope with low-frequency attenuation filter for position measurement of a nanoparticle

Quang Duc Pham, Yuichi Kusumi, Satoshi Hasegawa, and Yoshio Hayasaki
Opt. Lett. 37(19) 4119-4121 (2012)

Three-dimensional positioning of optically trapped nanoparticles

Takayuki Higuchi, Quang Duc Pham, Satoshi Hasegawa, and Yoshio Hayasaki
Appl. Opt. 50(34) H183-H188 (2011)

Three-dimensional subpixel estimation in holographic position measurement of an optically trapped nanoparticle

Akira Sato, Quang Duc Pham, Satoshi Hasegawa, and Yoshio Hayasaki
Appl. Opt. 52(1) A216-A222 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription