Abstract

A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed in the far field with the two wavelengths reveals the wavelength change. A spectral resolution of 100 Mhz is argued to be achievable.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber spectrometer based on speckle pattern reconstruction

Brandon Redding, Sebastien M. Popoff, and Hui Cao
Opt. Express 21(5) 6584-6600 (2013)

Noise analysis of spectrometers based on speckle pattern reconstruction

Brandon Redding, Sebastien M. Popoff, Yaron Bromberg, Michael A. Choma, and Hui Cao
Appl. Opt. 53(3) 410-417 (2014)

Laser-speckle angular-displacement sensor: theoretical and experimental study

Bjarke Rose, Husain Imam, Steen G. Hanson, Harold T. Yura, and René S. Hansen
Appl. Opt. 37(11) 2119-2129 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription