Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunneling-induced giant Goos–Hänchen shift in quantum wells

Not Accessible

Your library or personal account may give you access

Abstract

Tunneling-induced quantum interference experienced by an incident probe in the asymmetric double AlGaAs/GaAs quantum well (QW) structure can be modulated by means of an external control light beam and the tunable coupling strengths of resonant tunneling. These phenomena can be exploited to devise a novel intracavity medium to control Goos–Hänchen (GH) shifts of a mid-infrared probe beam incident on a cavity. For a suitably designed QW structure, our results show that maximum negative shift of 2.62 mm and positive shift of 0.56 mm are achievable for GH shifts in the reflected and transmitted light.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Goos–Hänchen and Imbert–Fedorov shifts for paraxial X-waves

Marco Ornigotti, Andrea Aiello, and Claudio Conti
Opt. Lett. 40(4) 558-561 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved