Abstract

The transmission spectra of finite-thickness slabs of three-dimensional (3D) diamond-lattice photonic crystals of air spheres in a dielectric background in which various concentrations of randomly located vacancies are present are studied. We find that resonant modes associated with isolated defects couple to form an extended defect band, leading to a significant increase in transmission for frequencies inside the 3D photonic bandgap. Outside the 3D gap, vacancies induce scattering from evanescent to propagating modes, leading to an increase in transmission near the pseudo-gap edges within the gap. The local defect density of states for several concentrations of vacancies is computed; thus, it is shown that the total number of defect states and the range of supported frequencies increase due to increasing vacancy density.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Half-disordered photonic crystal slabs

V. Beque, J. Keilman, and D. S. Citrin
Appl. Opt. 55(23) 6389-6393 (2016)

Investigation of defect cavities formed in three-dimensional woodpile photonic crystals

Mike P. C. Taverne, Ying-Lung D. Ho, and John G. Rarity
J. Opt. Soc. Am. B 32(4) 639-648 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription