Abstract

Vertical and horizontal equiluminance gratings (red–green and blue–yellow at 1 or 3 cycles per degree) act independently in contrast-threshold measurements. This suggests that detection of such patterns takes place in color-sensitive neural structures with orientational specificity.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).
  2. J. J. Kulikowski, R. Abadi, P. E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
    [CrossRef] [PubMed]
  3. C. R. Carlson, R. W. Cohen, I. Gorog, “Visual processing of simple two-dimensional sine-wave luminance gratings,” Vision Res. 17, 351–358 (1977).
    [CrossRef] [PubMed]
  4. D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  5. B. M. Dow, P. Gouras, “Color and spatial specificity of single units in Rhesus monkey foveal striate cortex,” J. Neurophysiol. 36, 79–100 (1973).
    [PubMed]
  6. L. G. Thorell, D. G. Albrecht, R. L. DeValois, “Spatial tuning properties of Macaque cortical cells to pure color and luminance stimuli,” Invest. Ophthalmol. Visual Sci. Suppl., April1978, p. 195.
  7. C. McCullough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 3688 (1965).
  8. J. E. W. Mayhew, S. M. Anstis, “Movement aftereffects contingent on color, intensity, and pattern,” Percept. Psychophys. 12, 77–85 (1972).
    [CrossRef]
  9. D. H. Kelly, “No oblique effect in chromatic pathways,” J. Opt. Soc. Am. 65, 1512–1514 (1975).
    [CrossRef]
  10. N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
    [CrossRef] [PubMed]
  11. R. M. Boynton, “Color, hue, and wavelength,” in Handbook of Perception, Volume V, Seeing, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), p. 323.
  12. R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef] [PubMed]
  13. E. D. Baker, Temporal Properties of Mechanisms Detecting Luminance and Chromatic Gratings, Ph.D. thesis (Ohio State University, Columbus, Ohio, 1978).
  14. R. F. Quick, “Theoretical problems in modeling color grating detection,” presented at Pittsburgh Conference on Modeling and Simulation, Pittsburgh, Pennsylvania, April, 1979.
  15. D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
    [CrossRef] [PubMed]

1978 (1)

L. G. Thorell, D. G. Albrecht, R. L. DeValois, “Spatial tuning properties of Macaque cortical cells to pure color and luminance stimuli,” Invest. Ophthalmol. Visual Sci. Suppl., April1978, p. 195.

1977 (1)

C. R. Carlson, R. W. Cohen, I. Gorog, “Visual processing of simple two-dimensional sine-wave luminance gratings,” Vision Res. 17, 351–358 (1977).
[CrossRef] [PubMed]

1976 (1)

D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
[CrossRef] [PubMed]

1975 (1)

1973 (2)

B. M. Dow, P. Gouras, “Color and spatial specificity of single units in Rhesus monkey foveal striate cortex,” J. Neurophysiol. 36, 79–100 (1973).
[PubMed]

J. J. Kulikowski, R. Abadi, P. E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[CrossRef] [PubMed]

1972 (1)

J. E. W. Mayhew, S. M. Anstis, “Movement aftereffects contingent on color, intensity, and pattern,” Percept. Psychophys. 12, 77–85 (1972).
[CrossRef]

1971 (1)

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

1968 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

1966 (1)

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

1965 (1)

C. McCullough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 3688 (1965).

1957 (1)

Abadi, R.

J. J. Kulikowski, R. Abadi, P. E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[CrossRef] [PubMed]

Albrecht, D. G.

L. G. Thorell, D. G. Albrecht, R. L. DeValois, “Spatial tuning properties of Macaque cortical cells to pure color and luminance stimuli,” Invest. Ophthalmol. Visual Sci. Suppl., April1978, p. 195.

Anstis, S. M.

J. E. W. Mayhew, S. M. Anstis, “Movement aftereffects contingent on color, intensity, and pattern,” Percept. Psychophys. 12, 77–85 (1972).
[CrossRef]

Baker, E. D.

E. D. Baker, Temporal Properties of Mechanisms Detecting Luminance and Chromatic Gratings, Ph.D. thesis (Ohio State University, Columbus, Ohio, 1978).

Bedford, R. E.

Boynton, R. M.

R. M. Boynton, “Color, hue, and wavelength,” in Handbook of Perception, Volume V, Seeing, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), p. 323.

Campbell, F. W.

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

Carlson, C. R.

C. R. Carlson, R. W. Cohen, I. Gorog, “Visual processing of simple two-dimensional sine-wave luminance gratings,” Vision Res. 17, 351–358 (1977).
[CrossRef] [PubMed]

Cohen, R. W.

C. R. Carlson, R. W. Cohen, I. Gorog, “Visual processing of simple two-dimensional sine-wave luminance gratings,” Vision Res. 17, 351–358 (1977).
[CrossRef] [PubMed]

DeValois, R. L.

L. G. Thorell, D. G. Albrecht, R. L. DeValois, “Spatial tuning properties of Macaque cortical cells to pure color and luminance stimuli,” Invest. Ophthalmol. Visual Sci. Suppl., April1978, p. 195.

Dow, B. M.

B. M. Dow, P. Gouras, “Color and spatial specificity of single units in Rhesus monkey foveal striate cortex,” J. Neurophysiol. 36, 79–100 (1973).
[PubMed]

Gorog, I.

C. R. Carlson, R. W. Cohen, I. Gorog, “Visual processing of simple two-dimensional sine-wave luminance gratings,” Vision Res. 17, 351–358 (1977).
[CrossRef] [PubMed]

Gouras, P.

B. M. Dow, P. Gouras, “Color and spatial specificity of single units in Rhesus monkey foveal striate cortex,” J. Neurophysiol. 36, 79–100 (1973).
[PubMed]

Graham, N.

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Kelly, D. H.

D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
[CrossRef] [PubMed]

D. H. Kelly, “No oblique effect in chromatic pathways,” J. Opt. Soc. Am. 65, 1512–1514 (1975).
[CrossRef]

King-Smith, P. E.

J. J. Kulikowski, R. Abadi, P. E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[CrossRef] [PubMed]

Kulikowski, J. J.

J. J. Kulikowski, R. Abadi, P. E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[CrossRef] [PubMed]

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

Mayhew, J. E. W.

J. E. W. Mayhew, S. M. Anstis, “Movement aftereffects contingent on color, intensity, and pattern,” Percept. Psychophys. 12, 77–85 (1972).
[CrossRef]

McCullough, C.

C. McCullough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 3688 (1965).

Nachmias, J.

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Quick, R. F.

R. F. Quick, “Theoretical problems in modeling color grating detection,” presented at Pittsburgh Conference on Modeling and Simulation, Pittsburgh, Pennsylvania, April, 1979.

Thorell, L. G.

L. G. Thorell, D. G. Albrecht, R. L. DeValois, “Spatial tuning properties of Macaque cortical cells to pure color and luminance stimuli,” Invest. Ophthalmol. Visual Sci. Suppl., April1978, p. 195.

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Wyszecki, G.

Invest. Ophthalmol. Visual Sci. Suppl. (1)

L. G. Thorell, D. G. Albrecht, R. L. DeValois, “Spatial tuning properties of Macaque cortical cells to pure color and luminance stimuli,” Invest. Ophthalmol. Visual Sci. Suppl., April1978, p. 195.

J. Neurophysiol. (1)

B. M. Dow, P. Gouras, “Color and spatial specificity of single units in Rhesus monkey foveal striate cortex,” J. Neurophysiol. 36, 79–100 (1973).
[PubMed]

J. Opt. Soc. Am. (2)

J. Physiol. (London) (2)

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

Percept. Psychophys. (1)

J. E. W. Mayhew, S. M. Anstis, “Movement aftereffects contingent on color, intensity, and pattern,” Percept. Psychophys. 12, 77–85 (1972).
[CrossRef]

Science (1)

C. McCullough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 3688 (1965).

Vision Res. (4)

D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
[CrossRef] [PubMed]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

J. J. Kulikowski, R. Abadi, P. E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[CrossRef] [PubMed]

C. R. Carlson, R. W. Cohen, I. Gorog, “Visual processing of simple two-dimensional sine-wave luminance gratings,” Vision Res. 17, 351–358 (1977).
[CrossRef] [PubMed]

Other (3)

R. M. Boynton, “Color, hue, and wavelength,” in Handbook of Perception, Volume V, Seeing, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), p. 323.

E. D. Baker, Temporal Properties of Mechanisms Detecting Luminance and Chromatic Gratings, Ph.D. thesis (Ohio State University, Columbus, Ohio, 1978).

R. F. Quick, “Theoretical problems in modeling color grating detection,” presented at Pittsburgh Conference on Modeling and Simulation, Pittsburgh, Pennsylvania, April, 1979.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Contrast thresholds for combined horizontal and vertical gratings plotted in the manner of Graham and Nachmias.10 Here ĈH is horizontal component contrast at threshold divided by the threshold of the horizontal component presented alone. ĈV is similarly defined for the vertical component. Each point is the sum of 16 trials, conducted in four experimental sessions. Standard deviations averaged 13% for both subjects. Open symbols, red–green equiluminance gratings; filled symbols, blue–yellow; A and a, luminance gratings. Dashed line shows the square threshold locus expected in the absence of any interaction between components.

Tables (1)

Tables Icon

Table 1 Factors that May Interfere with Display of Equiluminance Gratings

Metrics