Abstract

The probability for direct energy transfer from a dye molecule to the surface plasmons (SP) on a nearby metal is calculated using the classical Sommerfeld model. For 600-nm emission from a dipole-oriented ⊥ to an Ag surface, the peak SP coupling probability is 93% at a distance of 120 nm from the metal. The coupling is demonstrated in experiments with an Ag film between a rhodamine–methanol solution and a high-index prism. The SP-coupled radiation produces an intense cone of radiation in the prism, each frequency component of which satisfies the SP dispersion relation.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A preliminary account of this work was presented at the March 1979 American Physical Society Meeting [W. H. Weber, C. F. Eagen, Bull. Am. Phys. Soc.24, 441 (1979)].
  2. A Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949), Chap. VI.
  3. Y. M. Gerbshtein, I. A. Merkulov, D. N. Mirlin, JETP Lett. 22, 35 (1974).
  4. R. E. Benner, R. Dornhaus, C. A. Pan, R. K. Chang, Bull. Am. Phys. Soc. 24, 341 (1979).
  5. A. Otto, Z. Phys. 216, 398 (1968).
    [Crossref]
  6. H. Raether, in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1977), Vol. 9, p. 145.
  7. R. R. Chance, A. Prock, R. Silbey, in Advances in Chemical Physics, by I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. XXXVII, p. 1.
    [Crossref]
  8. H. Morawitz, M. R. Philpott, Phys. Rev. B 10, 4863 (1974).
    [Crossref]
  9. M. R. Philpott, J. Chem. Phys. 62, 1812 (1975).
    [Crossref]
  10. G. S. Agarwal, Phys. Rev. A 12, 1475 (1975).
    [Crossref]
  11. K. H. Drexhage, J. Lumin.1(2),693 (1970).
    [Crossref]
  12. H. Wolter, in Handbuch der Physik (Springer-Verlag, Berlin, 1956), Bd. 24.
  13. W. H. Weber, S. L. McCarthy, Phys. Rev. B 12, 5643 (1975).
    [Crossref]
  14. C. F. Eagen, W. H. Weber, Phys. Rev. B 19, 5068 (1979).
    [Crossref]

1979 (2)

R. E. Benner, R. Dornhaus, C. A. Pan, R. K. Chang, Bull. Am. Phys. Soc. 24, 341 (1979).

C. F. Eagen, W. H. Weber, Phys. Rev. B 19, 5068 (1979).
[Crossref]

1975 (3)

M. R. Philpott, J. Chem. Phys. 62, 1812 (1975).
[Crossref]

G. S. Agarwal, Phys. Rev. A 12, 1475 (1975).
[Crossref]

W. H. Weber, S. L. McCarthy, Phys. Rev. B 12, 5643 (1975).
[Crossref]

1974 (2)

Y. M. Gerbshtein, I. A. Merkulov, D. N. Mirlin, JETP Lett. 22, 35 (1974).

H. Morawitz, M. R. Philpott, Phys. Rev. B 10, 4863 (1974).
[Crossref]

1968 (1)

A. Otto, Z. Phys. 216, 398 (1968).
[Crossref]

Agarwal, G. S.

G. S. Agarwal, Phys. Rev. A 12, 1475 (1975).
[Crossref]

Benner, R. E.

R. E. Benner, R. Dornhaus, C. A. Pan, R. K. Chang, Bull. Am. Phys. Soc. 24, 341 (1979).

Chance, R. R.

R. R. Chance, A. Prock, R. Silbey, in Advances in Chemical Physics, by I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. XXXVII, p. 1.
[Crossref]

Chang, R. K.

R. E. Benner, R. Dornhaus, C. A. Pan, R. K. Chang, Bull. Am. Phys. Soc. 24, 341 (1979).

Dornhaus, R.

R. E. Benner, R. Dornhaus, C. A. Pan, R. K. Chang, Bull. Am. Phys. Soc. 24, 341 (1979).

Drexhage, K. H.

K. H. Drexhage, J. Lumin.1(2),693 (1970).
[Crossref]

Eagen, C. F.

C. F. Eagen, W. H. Weber, Phys. Rev. B 19, 5068 (1979).
[Crossref]

A preliminary account of this work was presented at the March 1979 American Physical Society Meeting [W. H. Weber, C. F. Eagen, Bull. Am. Phys. Soc.24, 441 (1979)].

Gerbshtein, Y. M.

Y. M. Gerbshtein, I. A. Merkulov, D. N. Mirlin, JETP Lett. 22, 35 (1974).

McCarthy, S. L.

W. H. Weber, S. L. McCarthy, Phys. Rev. B 12, 5643 (1975).
[Crossref]

Merkulov, I. A.

Y. M. Gerbshtein, I. A. Merkulov, D. N. Mirlin, JETP Lett. 22, 35 (1974).

Mirlin, D. N.

Y. M. Gerbshtein, I. A. Merkulov, D. N. Mirlin, JETP Lett. 22, 35 (1974).

Morawitz, H.

H. Morawitz, M. R. Philpott, Phys. Rev. B 10, 4863 (1974).
[Crossref]

Otto, A.

A. Otto, Z. Phys. 216, 398 (1968).
[Crossref]

Pan, C. A.

R. E. Benner, R. Dornhaus, C. A. Pan, R. K. Chang, Bull. Am. Phys. Soc. 24, 341 (1979).

Philpott, M. R.

M. R. Philpott, J. Chem. Phys. 62, 1812 (1975).
[Crossref]

H. Morawitz, M. R. Philpott, Phys. Rev. B 10, 4863 (1974).
[Crossref]

Prock, A.

R. R. Chance, A. Prock, R. Silbey, in Advances in Chemical Physics, by I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. XXXVII, p. 1.
[Crossref]

Raether, H.

H. Raether, in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1977), Vol. 9, p. 145.

Silbey, R.

R. R. Chance, A. Prock, R. Silbey, in Advances in Chemical Physics, by I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. XXXVII, p. 1.
[Crossref]

Sommerfeld, A

A Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949), Chap. VI.

Weber, W. H.

C. F. Eagen, W. H. Weber, Phys. Rev. B 19, 5068 (1979).
[Crossref]

W. H. Weber, S. L. McCarthy, Phys. Rev. B 12, 5643 (1975).
[Crossref]

A preliminary account of this work was presented at the March 1979 American Physical Society Meeting [W. H. Weber, C. F. Eagen, Bull. Am. Phys. Soc.24, 441 (1979)].

Wolter, H.

H. Wolter, in Handbuch der Physik (Springer-Verlag, Berlin, 1956), Bd. 24.

Bull. Am. Phys. Soc. (1)

R. E. Benner, R. Dornhaus, C. A. Pan, R. K. Chang, Bull. Am. Phys. Soc. 24, 341 (1979).

J. Chem. Phys. (1)

M. R. Philpott, J. Chem. Phys. 62, 1812 (1975).
[Crossref]

JETP Lett. (1)

Y. M. Gerbshtein, I. A. Merkulov, D. N. Mirlin, JETP Lett. 22, 35 (1974).

Phys. Rev. A (1)

G. S. Agarwal, Phys. Rev. A 12, 1475 (1975).
[Crossref]

Phys. Rev. B (3)

W. H. Weber, S. L. McCarthy, Phys. Rev. B 12, 5643 (1975).
[Crossref]

C. F. Eagen, W. H. Weber, Phys. Rev. B 19, 5068 (1979).
[Crossref]

H. Morawitz, M. R. Philpott, Phys. Rev. B 10, 4863 (1974).
[Crossref]

Z. Phys. (1)

A. Otto, Z. Phys. 216, 398 (1968).
[Crossref]

Other (6)

H. Raether, in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1977), Vol. 9, p. 145.

R. R. Chance, A. Prock, R. Silbey, in Advances in Chemical Physics, by I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. XXXVII, p. 1.
[Crossref]

A preliminary account of this work was presented at the March 1979 American Physical Society Meeting [W. H. Weber, C. F. Eagen, Bull. Am. Phys. Soc.24, 441 (1979)].

A Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949), Chap. VI.

K. H. Drexhage, J. Lumin.1(2),693 (1970).
[Crossref]

H. Wolter, in Handbuch der Physik (Springer-Verlag, Berlin, 1956), Bd. 24.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated SP emission probabilities versus distance from a thick Ag film. The dashed curve is for an orientationally averaged dipole, bav = 1/3(b + 2b||). The parameters are 2 = −15.5 + 0.5i, 1 = 1.766, λ = 600 nm, and q = 1.

Fig. 2
Fig. 2

Schematic diagram showing the incident and reflected beam, which produces an evanescent wave absorbed by the dye, and the SP-coupled, Stokes-shifted fluorescence, which produces a radiation cone in the prism.

Fig. 3
Fig. 3

Photographic plates showing a section of the SP-coupled fluorescence on the right and the reflected pump beam, which is highly attenuated, giving the small spot on the left. The dye was 10−3 M in methanol, and the Ag film was 75 nm thick.

Fig. 4
Fig. 4

Comparison between observed (from data in Fig. 3) and predicted (solid curve) SP dispersion relation. The experimental uncertainties in the data points are slightly larger than their sizes in the Figure. β is the angle between the exit beam and the normal to the 30° prism face.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

b = 1 + 3 2 q Im [ 0 r p × exp ( - 4 π 1 1 / 2 l 1 d / λ ) u 3 l 1 d u ] , b | | = 1 + 3 4 q Im { 0 [ ( u 2 - 1 ) r p + r s ] × exp ( - 4 π 1 1 / 2 l 1 d / λ ) u l 1 d u } ,
k sp = ω c ( 1 2 1 + 2 ) 1 / 2 .
Im ( r p ) = A ( u - u sp ) 2 + B 2 ,
A = ( 2 l 2 1 + 2 / l 2 ) l 1 3 l 2 2 2 ( 1 l 1 + 2 l 2 ) 2 u sp 2 , B = ( l 1 2 l 2 - 1 / 2 l 1 ) 2 ( 1 l 1 + 2 l 2 ) u sp ,
b , sp = 3 2 q A π u sp 3 B l 1 exp ( - 4 π 1 1 / 2 l 1 d / λ ) , b , sp = 3 4 q A π ( u sp 2 - 1 ) u sp B l 1 exp ( - 4 π 1 1 / 2 l 1 d / λ ) .
( ω f / c ) n p sin θ f = Re ( k sp ) ,

Metrics