Abstract

We describe the first reported observation of stimulated emission from a 5d–4f transition in a triply ionized rare-earth-doped crystal. Ce+3 ions in LiYF4 (YLF), optically pumped at 249 nm, emitted at 325.5 nm, the shortest wavelength yet obtained from an optically pumped solid-state laser. The large fluorescence linewidth of the laser transition makes the Ce:YLF laser a potentially tunable source of coherent near-ultraviolet radiation between 305 and 335 nm.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Sorokin, M. J. Stevenson, IBM J. Res. Dev. 5, 56 (1961).
    [Crossref]
  2. W. Kaiser, C. G. B. Garrett, D. L. Wood, Phys. Rev. 123, 766 (1961).
    [Crossref]
  3. Essentially the same wavelength was obtained in electron-beam-excited ZnS. See C. E. Hurwitz, Appl. Phys. Lett. 9, 116 (1966).
    [Crossref]
  4. L. R. Elias, W. S. Heaps, W. M. Yen, Phys. Rev. B, 8, 4989 (1973).
    [Crossref]
  5. R. R. Jacobs, W. F. Krupke, M. J. Weber, Appl. Phys. Lett. 33, 410 (1978), and references therein.
    [Crossref]
  6. K. H. Yang, J. A. DeLuca, Appl. Phys. Lett.594 (1977).
    [Crossref]
  7. E. P. Chicklis, C. S. Naiman, Sanders Associates, Nashua, New Hampshire, unpublished.
  8. W. J. Miniscalo, J. M. Pellegrino, W. M. Yen, J. Appl. Phys. 49, 12 (1978).
    [Crossref]
  9. H. P. Jenssen, Crystal Physics Laboratory Technical Report No. 16, Center for Materials Science and Engineering (MIT, Cambridge, Mass., September1971).
  10. E. P. Chicklis, Sanders Associates, Nashua, New Hampshire, personal communication.

1978 (2)

R. R. Jacobs, W. F. Krupke, M. J. Weber, Appl. Phys. Lett. 33, 410 (1978), and references therein.
[Crossref]

W. J. Miniscalo, J. M. Pellegrino, W. M. Yen, J. Appl. Phys. 49, 12 (1978).
[Crossref]

1977 (1)

K. H. Yang, J. A. DeLuca, Appl. Phys. Lett.594 (1977).
[Crossref]

1973 (1)

L. R. Elias, W. S. Heaps, W. M. Yen, Phys. Rev. B, 8, 4989 (1973).
[Crossref]

1966 (1)

Essentially the same wavelength was obtained in electron-beam-excited ZnS. See C. E. Hurwitz, Appl. Phys. Lett. 9, 116 (1966).
[Crossref]

1961 (2)

R. P. Sorokin, M. J. Stevenson, IBM J. Res. Dev. 5, 56 (1961).
[Crossref]

W. Kaiser, C. G. B. Garrett, D. L. Wood, Phys. Rev. 123, 766 (1961).
[Crossref]

Chicklis, E. P.

E. P. Chicklis, C. S. Naiman, Sanders Associates, Nashua, New Hampshire, unpublished.

E. P. Chicklis, Sanders Associates, Nashua, New Hampshire, personal communication.

DeLuca, J. A.

K. H. Yang, J. A. DeLuca, Appl. Phys. Lett.594 (1977).
[Crossref]

Elias, L. R.

L. R. Elias, W. S. Heaps, W. M. Yen, Phys. Rev. B, 8, 4989 (1973).
[Crossref]

Garrett, C. G. B.

W. Kaiser, C. G. B. Garrett, D. L. Wood, Phys. Rev. 123, 766 (1961).
[Crossref]

Heaps, W. S.

L. R. Elias, W. S. Heaps, W. M. Yen, Phys. Rev. B, 8, 4989 (1973).
[Crossref]

Hurwitz, C. E.

Essentially the same wavelength was obtained in electron-beam-excited ZnS. See C. E. Hurwitz, Appl. Phys. Lett. 9, 116 (1966).
[Crossref]

Jacobs, R. R.

R. R. Jacobs, W. F. Krupke, M. J. Weber, Appl. Phys. Lett. 33, 410 (1978), and references therein.
[Crossref]

Jenssen, H. P.

H. P. Jenssen, Crystal Physics Laboratory Technical Report No. 16, Center for Materials Science and Engineering (MIT, Cambridge, Mass., September1971).

Kaiser, W.

W. Kaiser, C. G. B. Garrett, D. L. Wood, Phys. Rev. 123, 766 (1961).
[Crossref]

Krupke, W. F.

R. R. Jacobs, W. F. Krupke, M. J. Weber, Appl. Phys. Lett. 33, 410 (1978), and references therein.
[Crossref]

Miniscalo, W. J.

W. J. Miniscalo, J. M. Pellegrino, W. M. Yen, J. Appl. Phys. 49, 12 (1978).
[Crossref]

Naiman, C. S.

E. P. Chicklis, C. S. Naiman, Sanders Associates, Nashua, New Hampshire, unpublished.

Pellegrino, J. M.

W. J. Miniscalo, J. M. Pellegrino, W. M. Yen, J. Appl. Phys. 49, 12 (1978).
[Crossref]

Sorokin, R. P.

R. P. Sorokin, M. J. Stevenson, IBM J. Res. Dev. 5, 56 (1961).
[Crossref]

Stevenson, M. J.

R. P. Sorokin, M. J. Stevenson, IBM J. Res. Dev. 5, 56 (1961).
[Crossref]

Weber, M. J.

R. R. Jacobs, W. F. Krupke, M. J. Weber, Appl. Phys. Lett. 33, 410 (1978), and references therein.
[Crossref]

Wood, D. L.

W. Kaiser, C. G. B. Garrett, D. L. Wood, Phys. Rev. 123, 766 (1961).
[Crossref]

Yang, K. H.

K. H. Yang, J. A. DeLuca, Appl. Phys. Lett.594 (1977).
[Crossref]

Yen, W. M.

W. J. Miniscalo, J. M. Pellegrino, W. M. Yen, J. Appl. Phys. 49, 12 (1978).
[Crossref]

L. R. Elias, W. S. Heaps, W. M. Yen, Phys. Rev. B, 8, 4989 (1973).
[Crossref]

Appl. Phys. Lett. (3)

Essentially the same wavelength was obtained in electron-beam-excited ZnS. See C. E. Hurwitz, Appl. Phys. Lett. 9, 116 (1966).
[Crossref]

R. R. Jacobs, W. F. Krupke, M. J. Weber, Appl. Phys. Lett. 33, 410 (1978), and references therein.
[Crossref]

K. H. Yang, J. A. DeLuca, Appl. Phys. Lett.594 (1977).
[Crossref]

IBM J. Res. Dev. (1)

R. P. Sorokin, M. J. Stevenson, IBM J. Res. Dev. 5, 56 (1961).
[Crossref]

J. Appl. Phys. (1)

W. J. Miniscalo, J. M. Pellegrino, W. M. Yen, J. Appl. Phys. 49, 12 (1978).
[Crossref]

Phys. Rev. (1)

W. Kaiser, C. G. B. Garrett, D. L. Wood, Phys. Rev. 123, 766 (1961).
[Crossref]

Phys. Rev. B, (1)

L. R. Elias, W. S. Heaps, W. M. Yen, Phys. Rev. B, 8, 4989 (1973).
[Crossref]

Other (3)

H. P. Jenssen, Crystal Physics Laboratory Technical Report No. 16, Center for Materials Science and Engineering (MIT, Cambridge, Mass., September1971).

E. P. Chicklis, Sanders Associates, Nashua, New Hampshire, personal communication.

E. P. Chicklis, C. S. Naiman, Sanders Associates, Nashua, New Hampshire, unpublished.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Absorption (solid line) and fluorescence (dotted line) spectra of Ce:YLF. Absorption measurement was for unpolarized light propagating parallel to the c axis of a 275-μm-thick plate of 1%-doped material and is not corrected for reflection losses. Fluorescence spectrum is not corrected for self-absorption around 300 nm, and thus actual intensity in this region may be somewhat larger than indicated. Spectra taken at excitation wavelengths of 193, 248, and 254 nm were essentially the same. Inset shows a schematic energy-level diagram for Ce:YLF.

Fig. 2
Fig. 2

Ce:YLF-laser output versus KrF-laser pump fluence in crystal.

Metrics