Abstract

Broadly tunable laser operation has been obtained at room temperature from the vibronic bands of single-crystal BeAl2O4:Cr3+ under Xe-flashlamp excitation. Continuous tuning is obtained from 701 to 794 nm, with maximum power at 750 nm. Long-pulse operation employing 6.3-mm × 76-mm rods easily provides 500 mJ in 200-μsec bursts, whereas 70-mJ, 120-nsec pulses are obtained under Q-switch operation.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Johnson, H. J. Guggenheim, R. A. Thomas, “Phonon-terminated optical masers,” Phys. Rev. 149, 179 (1966); L. F. Johnson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21 (1964).
    [CrossRef]
  2. L. F. Johnson, H. J. Guggenheim, “Electronic and phonon-terminated laser emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
    [CrossRef]
  3. P. F. Moulton, A. Mooradian, T. B. Reed, in Digest of Technical Papers, Tenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1978), paper C.2, p. 630.
  4. Tunable-laser performance in alexandrite was first presented by J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson at the Optical Society of America annual meeting, San Francisco, California, October 31–November 3, 1978.
  5. H. P. Jenssen, J. C. Walling, O. G. Peterson, R. C. Morris, “Broadly tunable laser performance in alexandrite at elevated temperature,” presented at Laser ’78 Conference, Orlando, Florida, December 1978.
  6. R. C. Morris, C. F. Cline, U.S. Patent3,997,853, December14, 1976.
  7. G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
    [CrossRef]
  8. E. F. Farrell, J. H. Fang, R. E. Newnham, “Refinement of the chrysoberyl struture,” Am. Mineral. 48, 804 (1963).
  9. C. F. Cline, R. C. Morris, M. Dutoit, P. J. Harget, “The physical properties of BeAl2O4,” J. Mater. Sci. (to be published).
  10. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134, 299 (1964).
  11. R. W. Boyd, J. F. Owen, K. J. Teegarden, “Laser action of M centers in lithium fluoride,” IEEE J. Quantum Electron. QE-14, 697 (1978).
    [CrossRef]

1978 (2)

G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
[CrossRef]

R. W. Boyd, J. F. Owen, K. J. Teegarden, “Laser action of M centers in lithium fluoride,” IEEE J. Quantum Electron. QE-14, 697 (1978).
[CrossRef]

1974 (1)

L. F. Johnson, H. J. Guggenheim, “Electronic and phonon-terminated laser emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

1966 (1)

L. F. Johnson, H. J. Guggenheim, R. A. Thomas, “Phonon-terminated optical masers,” Phys. Rev. 149, 179 (1966); L. F. Johnson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21 (1964).
[CrossRef]

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134, 299 (1964).

1963 (1)

E. F. Farrell, J. H. Fang, R. E. Newnham, “Refinement of the chrysoberyl struture,” Am. Mineral. 48, 804 (1963).

Boyd, R. W.

R. W. Boyd, J. F. Owen, K. J. Teegarden, “Laser action of M centers in lithium fluoride,” IEEE J. Quantum Electron. QE-14, 697 (1978).
[CrossRef]

Bukin, G. V.

G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
[CrossRef]

Cline, C. F.

R. C. Morris, C. F. Cline, U.S. Patent3,997,853, December14, 1976.

C. F. Cline, R. C. Morris, M. Dutoit, P. J. Harget, “The physical properties of BeAl2O4,” J. Mater. Sci. (to be published).

Dutoit, M.

C. F. Cline, R. C. Morris, M. Dutoit, P. J. Harget, “The physical properties of BeAl2O4,” J. Mater. Sci. (to be published).

Fang, J. H.

E. F. Farrell, J. H. Fang, R. E. Newnham, “Refinement of the chrysoberyl struture,” Am. Mineral. 48, 804 (1963).

Farrell, E. F.

E. F. Farrell, J. H. Fang, R. E. Newnham, “Refinement of the chrysoberyl struture,” Am. Mineral. 48, 804 (1963).

Guggenheim, H. J.

L. F. Johnson, H. J. Guggenheim, “Electronic and phonon-terminated laser emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

L. F. Johnson, H. J. Guggenheim, R. A. Thomas, “Phonon-terminated optical masers,” Phys. Rev. 149, 179 (1966); L. F. Johnson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21 (1964).
[CrossRef]

Harget, P. J.

C. F. Cline, R. C. Morris, M. Dutoit, P. J. Harget, “The physical properties of BeAl2O4,” J. Mater. Sci. (to be published).

Jenssen, H. P.

Tunable-laser performance in alexandrite was first presented by J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson at the Optical Society of America annual meeting, San Francisco, California, October 31–November 3, 1978.

H. P. Jenssen, J. C. Walling, O. G. Peterson, R. C. Morris, “Broadly tunable laser performance in alexandrite at elevated temperature,” presented at Laser ’78 Conference, Orlando, Florida, December 1978.

Johnson, L. F.

L. F. Johnson, H. J. Guggenheim, “Electronic and phonon-terminated laser emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

L. F. Johnson, H. J. Guggenheim, R. A. Thomas, “Phonon-terminated optical masers,” Phys. Rev. 149, 179 (1966); L. F. Johnson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21 (1964).
[CrossRef]

Matrosov, V. N.

G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134, 299 (1964).

Mooradian, A.

P. F. Moulton, A. Mooradian, T. B. Reed, in Digest of Technical Papers, Tenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1978), paper C.2, p. 630.

Morris, R. C.

H. P. Jenssen, J. C. Walling, O. G. Peterson, R. C. Morris, “Broadly tunable laser performance in alexandrite at elevated temperature,” presented at Laser ’78 Conference, Orlando, Florida, December 1978.

R. C. Morris, C. F. Cline, U.S. Patent3,997,853, December14, 1976.

Tunable-laser performance in alexandrite was first presented by J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson at the Optical Society of America annual meeting, San Francisco, California, October 31–November 3, 1978.

C. F. Cline, R. C. Morris, M. Dutoit, P. J. Harget, “The physical properties of BeAl2O4,” J. Mater. Sci. (to be published).

Moulton, P. F.

P. F. Moulton, A. Mooradian, T. B. Reed, in Digest of Technical Papers, Tenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1978), paper C.2, p. 630.

Newnham, R. E.

E. F. Farrell, J. H. Fang, R. E. Newnham, “Refinement of the chrysoberyl struture,” Am. Mineral. 48, 804 (1963).

O’Dell, E. W.

Tunable-laser performance in alexandrite was first presented by J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson at the Optical Society of America annual meeting, San Francisco, California, October 31–November 3, 1978.

Owen, J. F.

R. W. Boyd, J. F. Owen, K. J. Teegarden, “Laser action of M centers in lithium fluoride,” IEEE J. Quantum Electron. QE-14, 697 (1978).
[CrossRef]

Peterson, O. G.

H. P. Jenssen, J. C. Walling, O. G. Peterson, R. C. Morris, “Broadly tunable laser performance in alexandrite at elevated temperature,” presented at Laser ’78 Conference, Orlando, Florida, December 1978.

Tunable-laser performance in alexandrite was first presented by J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson at the Optical Society of America annual meeting, San Francisco, California, October 31–November 3, 1978.

Reed, T. B.

P. F. Moulton, A. Mooradian, T. B. Reed, in Digest of Technical Papers, Tenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1978), paper C.2, p. 630.

Sevast’yanov, B. K.

G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
[CrossRef]

Teegarden, K. J.

R. W. Boyd, J. F. Owen, K. J. Teegarden, “Laser action of M centers in lithium fluoride,” IEEE J. Quantum Electron. QE-14, 697 (1978).
[CrossRef]

Thomas, R. A.

L. F. Johnson, H. J. Guggenheim, R. A. Thomas, “Phonon-terminated optical masers,” Phys. Rev. 149, 179 (1966); L. F. Johnson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21 (1964).
[CrossRef]

Timoshechkin, M. I.

G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
[CrossRef]

Volkov, S. Yu.

G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
[CrossRef]

Walling, J. C.

Tunable-laser performance in alexandrite was first presented by J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson at the Optical Society of America annual meeting, San Francisco, California, October 31–November 3, 1978.

H. P. Jenssen, J. C. Walling, O. G. Peterson, R. C. Morris, “Broadly tunable laser performance in alexandrite at elevated temperature,” presented at Laser ’78 Conference, Orlando, Florida, December 1978.

Am. Mineral. (1)

E. F. Farrell, J. H. Fang, R. E. Newnham, “Refinement of the chrysoberyl struture,” Am. Mineral. 48, 804 (1963).

IEEE J. Quantum Electron. (2)

L. F. Johnson, H. J. Guggenheim, “Electronic and phonon-terminated laser emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

R. W. Boyd, J. F. Owen, K. J. Teegarden, “Laser action of M centers in lithium fluoride,” IEEE J. Quantum Electron. QE-14, 697 (1978).
[CrossRef]

Phys. Rev. (1)

L. F. Johnson, H. J. Guggenheim, R. A. Thomas, “Phonon-terminated optical masers,” Phys. Rev. 149, 179 (1966); L. F. Johnson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21 (1964).
[CrossRef]

Phys. Rev. A (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134, 299 (1964).

Sov. J. Quantum Electron. (1)

G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, M. I. Timoshechkin, Sov. J. Quantum Electron. 8, 671 (1978).
[CrossRef]

Other (5)

C. F. Cline, R. C. Morris, M. Dutoit, P. J. Harget, “The physical properties of BeAl2O4,” J. Mater. Sci. (to be published).

P. F. Moulton, A. Mooradian, T. B. Reed, in Digest of Technical Papers, Tenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1978), paper C.2, p. 630.

Tunable-laser performance in alexandrite was first presented by J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, O. G. Peterson at the Optical Society of America annual meeting, San Francisco, California, October 31–November 3, 1978.

H. P. Jenssen, J. C. Walling, O. G. Peterson, R. C. Morris, “Broadly tunable laser performance in alexandrite at elevated temperature,” presented at Laser ’78 Conference, Orlando, Florida, December 1978.

R. C. Morris, C. F. Cline, U.S. Patent3,997,853, December14, 1976.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Room-temperature fluorescence of BeAl2O4:Cr3+, E||b.

Fig. 2
Fig. 2

Alexandrite-laser threshold as a function of wave-number. The solid line is a hand-drawn fit to the discrete data points and is drawn to indicate the continuity of tuning.

Fig. 3
Fig. 3

Naperian absorption coefficient of alexandrite. The Cr3+ concentration given includes all Cr3+ ions, only ~53% of which fall on laser-active mirror sites. It is expected that the bulk of the absorption arises from the mirror-site Cr3+ ions.

Metrics