Abstract

Picosecond infrared continua are produced by propagating an intense ultrashort 1.064-μm pulse through a LiNbO3 crystal set near the degenerate point. Under our experimental conditions, gain broadening is identified as the principal mechanism leading to the superbroad spectral output.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974).
    [CrossRef]
  2. A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
    [CrossRef]
  3. R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, 1217 (1970).
    [CrossRef]
  4. R. R. Alfano, S. L. Shapiro, Chem. Phys. Lett. 8, 631 (1971).
    [CrossRef]
  5. G. E. Busch, R. P. Jones, P. M. Rentzepis, Chem. Phys. Lett. 18, 178 (1973).
    [CrossRef]
  6. D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974).
    [CrossRef]
  7. H. Tashiro, Y. Yajima, Chem. Phys. Lett. 25, 582 (1974).
    [CrossRef]
  8. D. Holton, M. W. Windsor, Ann. Rev. Biophys. Bioeng. 7, 189 (1978).
    [CrossRef]
  9. N. Bloembergen, Opt. Commun. 8, 285 (1973).
    [CrossRef]
  10. A. Penzkofer, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 31, 863 (1973).
    [CrossRef]
  11. A. Penzkofer, W. Kaiser, Opt. Quantum Electron. 9, 315 (1977).
    [CrossRef]
  12. R. R. Alfano, L. Hope, S. L. Shapiro, Phys. Rev. A 6, 433 (1972).
    [CrossRef]
  13. R. Danelyus, V. Kabelka, A. Piskarskus, V. Smil’gyavichyus, Kvantovaya Elektron. (Moscow) 5, 679 (1978) [Sov. J. Quantum Electron. 8, 398 (1978)].
  14. A. J. Campillo, R. C. Hyer, S. L. Shapiro, Opt. Lett. 4, 325 (1979).
    [CrossRef] [PubMed]
  15. S. E. Harris, Proc. IEEE 57, 2096 (1969).
    [CrossRef]
  16. M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
    [CrossRef]
  17. H. Kildal, R. F. Begley, M. M. Choy, R. L. Byer, J. Opt. Soc. Am. 62, 1398 (1972).
  18. R. L. Byer, Ph.D. dissertation, Microwave Lab. Rep. 1711 (Stanford University, Stanford, Calif., 1968).
  19. R. G. Smith, J. Appl. Phys. 41, 4121 (1970).
    [CrossRef]

1979 (1)

1978 (3)

R. Danelyus, V. Kabelka, A. Piskarskus, V. Smil’gyavichyus, Kvantovaya Elektron. (Moscow) 5, 679 (1978) [Sov. J. Quantum Electron. 8, 398 (1978)].

A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

D. Holton, M. W. Windsor, Ann. Rev. Biophys. Bioeng. 7, 189 (1978).
[CrossRef]

1977 (1)

A. Penzkofer, W. Kaiser, Opt. Quantum Electron. 9, 315 (1977).
[CrossRef]

1974 (3)

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974).
[CrossRef]

H. Tashiro, Y. Yajima, Chem. Phys. Lett. 25, 582 (1974).
[CrossRef]

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974).
[CrossRef]

1973 (3)

N. Bloembergen, Opt. Commun. 8, 285 (1973).
[CrossRef]

A. Penzkofer, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 31, 863 (1973).
[CrossRef]

G. E. Busch, R. P. Jones, P. M. Rentzepis, Chem. Phys. Lett. 18, 178 (1973).
[CrossRef]

1972 (2)

R. R. Alfano, L. Hope, S. L. Shapiro, Phys. Rev. A 6, 433 (1972).
[CrossRef]

H. Kildal, R. F. Begley, M. M. Choy, R. L. Byer, J. Opt. Soc. Am. 62, 1398 (1972).

1971 (1)

R. R. Alfano, S. L. Shapiro, Chem. Phys. Lett. 8, 631 (1971).
[CrossRef]

1970 (2)

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, 1217 (1970).
[CrossRef]

R. G. Smith, J. Appl. Phys. 41, 4121 (1970).
[CrossRef]

1969 (1)

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

1966 (1)

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Alfano, R. R.

R. R. Alfano, L. Hope, S. L. Shapiro, Phys. Rev. A 6, 433 (1972).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Chem. Phys. Lett. 8, 631 (1971).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, 1217 (1970).
[CrossRef]

Begley, R. F.

H. Kildal, R. F. Begley, M. M. Choy, R. L. Byer, J. Opt. Soc. Am. 62, 1398 (1972).

Bloembergen, N.

N. Bloembergen, Opt. Commun. 8, 285 (1973).
[CrossRef]

Busch, G. E.

G. E. Busch, R. P. Jones, P. M. Rentzepis, Chem. Phys. Lett. 18, 178 (1973).
[CrossRef]

Byer, R. L.

H. Kildal, R. F. Begley, M. M. Choy, R. L. Byer, J. Opt. Soc. Am. 62, 1398 (1972).

R. L. Byer, Ph.D. dissertation, Microwave Lab. Rep. 1711 (Stanford University, Stanford, Calif., 1968).

Campillo, A. J.

Choy, M. M.

H. Kildal, R. F. Begley, M. M. Choy, R. L. Byer, J. Opt. Soc. Am. 62, 1398 (1972).

Danelyus, R.

R. Danelyus, V. Kabelka, A. Piskarskus, V. Smil’gyavichyus, Kvantovaya Elektron. (Moscow) 5, 679 (1978) [Sov. J. Quantum Electron. 8, 398 (1978)].

Greiter, L.

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974).
[CrossRef]

Harris, S. E.

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Hobden, M. V.

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Holton, D.

D. Holton, M. W. Windsor, Ann. Rev. Biophys. Bioeng. 7, 189 (1978).
[CrossRef]

Hope, L.

R. R. Alfano, L. Hope, S. L. Shapiro, Phys. Rev. A 6, 433 (1972).
[CrossRef]

Hyer, R. C.

Jones, R. P.

G. E. Busch, R. P. Jones, P. M. Rentzepis, Chem. Phys. Lett. 18, 178 (1973).
[CrossRef]

Kabelka, V.

R. Danelyus, V. Kabelka, A. Piskarskus, V. Smil’gyavichyus, Kvantovaya Elektron. (Moscow) 5, 679 (1978) [Sov. J. Quantum Electron. 8, 398 (1978)].

Kaiser, W.

A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

A. Penzkofer, W. Kaiser, Opt. Quantum Electron. 9, 315 (1977).
[CrossRef]

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974).
[CrossRef]

A. Penzkofer, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 31, 863 (1973).
[CrossRef]

Kildal, H.

H. Kildal, R. F. Begley, M. M. Choy, R. L. Byer, J. Opt. Soc. Am. 62, 1398 (1972).

Laubereau, A.

A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974).
[CrossRef]

A. Penzkofer, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 31, 863 (1973).
[CrossRef]

Magde, D.

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974).
[CrossRef]

Penzkofer, A.

A. Penzkofer, W. Kaiser, Opt. Quantum Electron. 9, 315 (1977).
[CrossRef]

A. Penzkofer, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 31, 863 (1973).
[CrossRef]

Piskarskus, A.

R. Danelyus, V. Kabelka, A. Piskarskus, V. Smil’gyavichyus, Kvantovaya Elektron. (Moscow) 5, 679 (1978) [Sov. J. Quantum Electron. 8, 398 (1978)].

Rentzepis, P. M.

G. E. Busch, R. P. Jones, P. M. Rentzepis, Chem. Phys. Lett. 18, 178 (1973).
[CrossRef]

Seilmeier, A.

A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

Shapiro, S. L.

A. J. Campillo, R. C. Hyer, S. L. Shapiro, Opt. Lett. 4, 325 (1979).
[CrossRef] [PubMed]

R. R. Alfano, L. Hope, S. L. Shapiro, Phys. Rev. A 6, 433 (1972).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Chem. Phys. Lett. 8, 631 (1971).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, 1217 (1970).
[CrossRef]

Smil’gyavichyus, V.

R. Danelyus, V. Kabelka, A. Piskarskus, V. Smil’gyavichyus, Kvantovaya Elektron. (Moscow) 5, 679 (1978) [Sov. J. Quantum Electron. 8, 398 (1978)].

Smith, R. G.

R. G. Smith, J. Appl. Phys. 41, 4121 (1970).
[CrossRef]

Spanner, K.

A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

Tashiro, H.

H. Tashiro, Y. Yajima, Chem. Phys. Lett. 25, 582 (1974).
[CrossRef]

Warner, J.

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Windsor, M. W.

D. Holton, M. W. Windsor, Ann. Rev. Biophys. Bioeng. 7, 189 (1978).
[CrossRef]

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974).
[CrossRef]

Yajima, Y.

H. Tashiro, Y. Yajima, Chem. Phys. Lett. 25, 582 (1974).
[CrossRef]

Ann. Rev. Biophys. Bioeng. (1)

D. Holton, M. W. Windsor, Ann. Rev. Biophys. Bioeng. 7, 189 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

A. Laubereau, L. Greiter, W. Kaiser, Appl. Phys. Lett. 25, 87 (1974).
[CrossRef]

Chem. Phys. Lett. (4)

R. R. Alfano, S. L. Shapiro, Chem. Phys. Lett. 8, 631 (1971).
[CrossRef]

G. E. Busch, R. P. Jones, P. M. Rentzepis, Chem. Phys. Lett. 18, 178 (1973).
[CrossRef]

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974).
[CrossRef]

H. Tashiro, Y. Yajima, Chem. Phys. Lett. 25, 582 (1974).
[CrossRef]

J. Appl. Phys. (1)

R. G. Smith, J. Appl. Phys. 41, 4121 (1970).
[CrossRef]

J. Opt. Soc. Am. (1)

H. Kildal, R. F. Begley, M. M. Choy, R. L. Byer, J. Opt. Soc. Am. 62, 1398 (1972).

Kvantovaya Elektron. (Moscow) (1)

R. Danelyus, V. Kabelka, A. Piskarskus, V. Smil’gyavichyus, Kvantovaya Elektron. (Moscow) 5, 679 (1978) [Sov. J. Quantum Electron. 8, 398 (1978)].

Opt. Commun. (2)

A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. 24, 237 (1978).
[CrossRef]

N. Bloembergen, Opt. Commun. 8, 285 (1973).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

A. Penzkofer, W. Kaiser, Opt. Quantum Electron. 9, 315 (1977).
[CrossRef]

Phys. Lett. (1)

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Phys. Rev. A (1)

R. R. Alfano, L. Hope, S. L. Shapiro, Phys. Rev. A 6, 433 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

A. Penzkofer, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 31, 863 (1973).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, 1217 (1970).
[CrossRef]

Proc. IEEE (1)

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Other (1)

R. L. Byer, Ph.D. dissertation, Microwave Lab. Rep. 1711 (Stanford University, Stanford, Calif., 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated normalized small-signal gain, defined as Gain/Γ2l2 = sinc2kl/2), versus signal frequency of a 1.064-μm-pumped, 4.5-cm-long LiNbO3 OPO at θ = 44.672° (A), 44.68° (B), and 44.69° (C). T = 293 K.

Fig. 2
Fig. 2

Calculated normalized small-signal gain, Gain/Γ2l2, versus signal frequency for several angles, α (see insert). kp is propagated at the degenerate angle, θdeg, and ki is oriented to minimize Δk in the computations. The LiNbO3 crystal is 4.5 cm in length, and T = 293 K.

Fig. 3
Fig. 3

Calculated normalized gain versus signal frequency for a 1.064-μm-pumped, 4.5-cm LiNbO3 OPO at T = 293 K. Here the normalized gain is defined by the expression, Gain/sinh2l) = Γ2l2 sinh2[(Γ2 − Δk2/4)1/2l]/[sinh2l)](Γ2 − Δk2/4)l2. θ = 44.69° is the approximate operating angle of our traveling-wave parametric oscillator.

Fig. 4
Fig. 4

Calculated (solid line) and measured normalized gain versus signal frequency for a 1.064-μm, 4-GW/CM2 pumped 2-cm LiNbO3 OPA at 293 K. Normalized gain is defined by the expression Γ2l2 sinh2[(Γ2 − Δk2/4)1/2l]/[sinh2l)](Γ2 − Δk2/4)l2. Γ is the gain per unit length defined in Ref. 15.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν BW = 1 l ( n i - n s + n i ν v i - n s ν ν s ) .
G = Γ 2 l 2 sinh 2 [ ( Γ 2 - Δ k 2 4 ) 1 / 2 l ] ( Γ 2 - Δ k 2 4 ) l 2 ,

Metrics