Abstract

A noncoherent optical vector–matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cutrona, in Optical and Electro-Optical Information Processing, J. Tippett, eds. (MIT Press, Cambridge, Massachusetts, 1965), pp. 97–98.
  2. A. Edison, M. Nobel, Final Report, Contract AF19(628-4199), General Electric Company (November1966).
  3. D. Mengent, U.S. Patent3,525,856 (October6, 1966).
  4. W. Schneider, W. Fink, Opt. Acta 22, 879 (1975).
    [CrossRef]
  5. M. Monahan, in Digest of International Computing Conference, Washington, D C. (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 25–33.
  6. J. W. Goodman, A. R. Dias, L. M. Woody, Opt. Lett. 2, 1 (1978).
    [CrossRef] [PubMed]
  7. C. B. Burckhardt, Appl. Opt. 9, 1949 (1970).
    [CrossRef] [PubMed]
  8. J. W. Goodman, L. M. Woody, Appl. Opt. 16, 2611 (1977).
    [CrossRef] [PubMed]
  9. D. Psaltis, D. Casasent, M. Carlotto, Proc. Soc. Photo-Opt. Instrum. Eng.180 (to be published, 1979).

1978 (1)

1977 (1)

1975 (1)

W. Schneider, W. Fink, Opt. Acta 22, 879 (1975).
[CrossRef]

1970 (1)

Burckhardt, C. B.

Carlotto, M.

D. Psaltis, D. Casasent, M. Carlotto, Proc. Soc. Photo-Opt. Instrum. Eng.180 (to be published, 1979).

Casasent, D.

D. Psaltis, D. Casasent, M. Carlotto, Proc. Soc. Photo-Opt. Instrum. Eng.180 (to be published, 1979).

Cutrona, L.

L. Cutrona, in Optical and Electro-Optical Information Processing, J. Tippett, eds. (MIT Press, Cambridge, Massachusetts, 1965), pp. 97–98.

Dias, A. R.

Edison, A.

A. Edison, M. Nobel, Final Report, Contract AF19(628-4199), General Electric Company (November1966).

Fink, W.

W. Schneider, W. Fink, Opt. Acta 22, 879 (1975).
[CrossRef]

Goodman, J. W.

Mengent, D.

D. Mengent, U.S. Patent3,525,856 (October6, 1966).

Monahan, M.

M. Monahan, in Digest of International Computing Conference, Washington, D C. (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 25–33.

Nobel, M.

A. Edison, M. Nobel, Final Report, Contract AF19(628-4199), General Electric Company (November1966).

Psaltis, D.

D. Psaltis, D. Casasent, M. Carlotto, Proc. Soc. Photo-Opt. Instrum. Eng.180 (to be published, 1979).

Schneider, W.

W. Schneider, W. Fink, Opt. Acta 22, 879 (1975).
[CrossRef]

Woody, L. M.

Appl. Opt. (2)

Opt. Acta (1)

W. Schneider, W. Fink, Opt. Acta 22, 879 (1975).
[CrossRef]

Opt. Lett. (1)

Other (5)

M. Monahan, in Digest of International Computing Conference, Washington, D C. (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 25–33.

D. Psaltis, D. Casasent, M. Carlotto, Proc. Soc. Photo-Opt. Instrum. Eng.180 (to be published, 1979).

L. Cutrona, in Optical and Electro-Optical Information Processing, J. Tippett, eds. (MIT Press, Cambridge, Massachusetts, 1965), pp. 97–98.

A. Edison, M. Nobel, Final Report, Contract AF19(628-4199), General Electric Company (November1966).

D. Mengent, U.S. Patent3,525,856 (October6, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of an iterative optical processor.

Fig. 2
Fig. 2

Schematic diagram of a color-multiplexed optical processor.

Fig. 3
Fig. 3

Output-plane patterns at selected iterations.

Fig. 4
Fig. 4

Color-multiplexed complex vector–matrix multiplication. (a) Input, (b) mask output, (c) system output. (Printed in black and white: v, violet; g, green; o, orange).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C m = n A n b n m ,
C = B A .
A = B - 1 C .
A i + 1 = ( I - B ) A i + C ,
C 0 ^ + C 1 ^ + C 2 ^ = ( B 0 ^ + B 1 ^ + B 2 ^ ) ( A 0 ^ + A 1 ^ + A 2 ^ ) = ( B 0 ^ A 0 ^ + B 1 ^ A 2 ^ + B 2 ^ A 1 ^ ) 0 ^ + ( B 1 ^ A 0 ^ + B 2 A 2 ^ + B 0 ^ A 1 ^ ) 1 ^ + ( B 2 ^ A 0 ^ + B 0 ^ A 2 + B 1 ^ A 1 ^ ) 2 ^ .
C * = B A .

Metrics