Abstract

The acoustic sensitivity of previously reported evanescent-field fiber couplers has been measured. The measured values were substantially larger than the values calculated from our theoretical model. A qualitative explanation of this discrepancy is presented.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
    [CrossRef] [PubMed]
  2. M. R. Layton, J. A. Bucaro, Appl. Opt. 18, 666 (1979).
    [CrossRef] [PubMed]
  3. J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1961 (1977).
    [CrossRef]
  4. J. H. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
    [CrossRef]
  5. J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
    [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics (Pergaman, New York, 1965).
  7. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

1979 (2)

1977 (3)

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1961 (1977).
[CrossRef]

J. H. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

1969 (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Bhuta, P. G.

J. H. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergaman, New York, 1965).

Bucaro, J. A.

M. R. Layton, J. A. Bucaro, Appl. Opt. 18, 666 (1979).
[CrossRef] [PubMed]

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1961 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

Carome, E. F.

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1961 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

Cole, J. H.

J. H. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1961 (1977).
[CrossRef]

Giallorenzi, T. G.

Johnson, R. L.

J. H. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Layton, M. R.

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Sheem, S. K.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergaman, New York, 1965).

Appl. Opt. (2)

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1961 (1977).
[CrossRef]

M. R. Layton, J. A. Bucaro, Appl. Opt. 18, 666 (1979).
[CrossRef] [PubMed]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

J. Acoust. Soc. Am. (2)

J. H. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergaman, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental configuration to measure acoustic sensitivity of a bottle coupler.

Fig. 2
Fig. 2

Relative acoustic sensitivity as a function of optical-beam-splitting ratio. Measurement was made by turning the threaded cap (Fig. 1) in one direction. Then the cap was rotated back to the original position (I2 = 0) and the second measurement was made. The third measurement was made similarly.

Fig. 3
Fig. 3

Dependence of acoustic sensitivity as a function of dc light level as indicated by Fig. 2.

Fig. 4
Fig. 4

Conservation of total optical energy (ΔI2 = −ΔI1). The vertical-scale difference is due to a difference in detector sensitivities.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I a = 1 - I b ,
I b = sin 2 ( π L / 2 l ) ,
Δ I 2 I - I 2 l Δ l + I 2 L Δ L .
l = ( π ρ D 2 δ W U 2 ) [ V 3 exp ( W D 0 ) ] ,
D 0 = D - 2.
Δ l = l D 0 Δ D 0 + l V Δ V = ( a V 2 e W D 0 ) [ W V Δ D 0 + ( 3 + V D 0 ) Δ V ) ] ,
a = ( π ρ D / 2 δ W U 2 ) .
Δ V = ( 2 π ρ / λ ) ( n 1 2 - n 2 ) - 1 / 2 ( n 1 Δ n 1 - n Δ n ) + 2 π λ ( n 1 2 - n 2 ) 1 / 2 Δ ρ
Δ D 0 = 1 / ρ Δ d .
Δ I 2 I = sin ( π L l ) { π L V l [ W V ρ Δ d + ( 3 + V D 0 ) ( 2 π ρ / λ ) ( n 1 2 - n 2 ) - 1 / 2 × ( n 1 Δ n 1 - n Δ n ) + ( 3 + V D 0 ) ( 2 π / λ ) × ( n 1 2 - n 2 ) 1 / 2 Δ ρ ] + 2 π l Δ L } .
L = 4 cm , l = 2 cm - , ρ = 2.2 μ m , D = 2.0 - 2.5 μ m , n 1 = 1.459 , n = 1.33 , W = 13.5 , V = 13.7 , U = 2.4 , λ = 0.63 μ m .
Δ d / d = κ Δ p / 3 ,
Δ ρ / ρ = κ Δ p / 2 ,
Δ n n = κ 6 n 2 ( n 2 - 1 ) ( n 2 + 2 ) Δ p .

Metrics