Abstract

Image processing by means of an interactive pupil technique is described. A Bragg-diffraction sound cell is used to achieve both wave-front division and temporal-carrier offset.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz, J. Opt. Soc. Am. 52, 827 (1962).
    [CrossRef]
  2. A. W. Lohmann, W. T. Rhodes, Appl. Opt. 17, 1141 (1978).
    [CrossRef] [PubMed]
  3. D. Goerlitz, F. Lanzl, Opt. Commun. 20, 68 (1977).
    [CrossRef]
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  5. A. W. Lohmann, Appl. Opt. 16, 261 (1977).
    [CrossRef] [PubMed]
  6. W. Stoner, Appl. Opt. 17, 2454 (1978).
    [CrossRef] [PubMed]
  7. W. T. Rhodes, Appl. Opt. 16, 265 (1977).
    [CrossRef] [PubMed]
  8. P. Chavel, S. Lowenthal, J. Opt. Soc. Am. 66, 14 (1976).
    [CrossRef]
  9. W. T. Rhodes, in Proceedings of the 1978 International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1979).
  10. W. T. Rhodes, in Proceedings of the Electro-Optics/Laser 1978 Conference (Industrial and Scientific Conference Management, Chicago, Ill., 1979).
  11. A. Korpel, “Acousto-optics,” in Applied Solid State Science, Vol. 3, R. Wolfe, ed. (Academic, New York, 1972).

1978 (2)

1977 (3)

1976 (1)

1962 (1)

Chavel, P.

Goerlitz, D.

D. Goerlitz, F. Lanzl, Opt. Commun. 20, 68 (1977).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Korpel, A.

A. Korpel, “Acousto-optics,” in Applied Solid State Science, Vol. 3, R. Wolfe, ed. (Academic, New York, 1972).

Lanzl, F.

D. Goerlitz, F. Lanzl, Opt. Commun. 20, 68 (1977).
[CrossRef]

Lohmann, A. W.

Lowenthal, S.

Lukosz, W.

Rhodes, W. T.

A. W. Lohmann, W. T. Rhodes, Appl. Opt. 17, 1141 (1978).
[CrossRef] [PubMed]

W. T. Rhodes, Appl. Opt. 16, 265 (1977).
[CrossRef] [PubMed]

W. T. Rhodes, in Proceedings of the 1978 International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1979).

W. T. Rhodes, in Proceedings of the Electro-Optics/Laser 1978 Conference (Industrial and Scientific Conference Management, Chicago, Ill., 1979).

Stoner, W.

Appl. Opt. (4)

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

D. Goerlitz, F. Lanzl, Opt. Commun. 20, 68 (1977).
[CrossRef]

Other (4)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

W. T. Rhodes, in Proceedings of the 1978 International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1979).

W. T. Rhodes, in Proceedings of the Electro-Optics/Laser 1978 Conference (Industrial and Scientific Conference Management, Chicago, Ill., 1979).

A. Korpel, “Acousto-optics,” in Applied Solid State Science, Vol. 3, R. Wolfe, ed. (Academic, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Idealized processor

Fig. 2
Fig. 2

(a) Separate beams in plane 1. (b) Resulting |OTF| is a band-pass filter. (c) One beam partially blocked. (d) Resulting |OTF| shifted to lower frequencies.

Fig. 3
Fig. 3

(a) Phase and amplitude of impulse response for Γ1 = 1 and Δν = 8 MHz. (b) Corresponding OTF at Δν = 8 MHz and 4 MHZ.

Fig. 4
Fig. 4

(a) |OTF|’s for Γ = 1 and Γ = knife edge, as in 2(c). (b) Shift in bandpass center as a function of current reduction through blocking.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A cos ( 2 π ν t + ϕ ) = Re [ A exp ( - j 2 π ν t ) ] ,
U 2 ( x 2 , y 2 ) exp ( - j 2 π Δ ν 2 t ) and V 2 ( x 2 , y 2 ) exp ( + j 2 π Δ ν 2 t ) ,
I ( x , y ) = U 2 ( x 2 , y 2 ) V 2 * ( x 2 , y 2 ) × Γ 2 ( x + x 2 , y + y 2 ) 2 d x 2 d y 2 ,
I ( - x , - y ) = ( U 2 V 2 * ) Γ 2 2 ,
F { I } = F * { I * ( - x , - y ) } = F * { U 2 * V 2 } F { Γ 2 2 } ,
F { I } ( f x , f y ) = I ( x , y ) exp ( - j 2 π f x x - j 2 π f y y ) d x d y .
OTF = F { I } / F { Γ 2 2 } = F * { U 2 * V 2 } .
U 2 ( x 2 , y 2 ) = F { U 1 ( x 1 λ f 2 , y 1 λ f 2 ) } ,
V 2 ( x 2 , y 2 ) = F { V 1 ( x 1 λ f 2 , y 1 λ f 2 ) } .
OTF = U 1 V 1 ,
OTF ( f x , f y ) = U 1 ( x 1 , y 1 ) × V 1 * ( x 1 - λ f 2 f x , y 1 - λ f 2 f y ) d x 1 d y 1 .
B ( x ) exp ( - j 2 π x s λ f 2 ) ,

Metrics