Abstract

We propose a concept of a structure—a resonant optical gun—to realize an efficient propulsion of dielectric microparticles by light forces. The structure is based on a waveguide in which a reversal of the electromagnetic momentum flow of the incident mode is realized by exciting a whispering gallery resonance in the microparticle. The propelling force can reach the value up to the theoretical maximum of twice the momentum flow of the initial wave. The force density oscillates along the particle periphery and has very large amplitude.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
    [CrossRef]
  2. A. V. Maslov, V. N. Astratov, and M. I. Bakunov, Phys. Rev. A 87, 053848 (2013).
    [CrossRef]
  3. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, Opt. Express 15, 14322 (2007).
    [CrossRef]
  4. A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
    [CrossRef]
  5. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  6. P. T. Rakich, M. A. Popović, and Z. Wang, Opt. Express 17, 18116 (2009).
    [CrossRef]
  7. A. S. Shalin and S. V. Sukhov, Plasmonics 8, 625 (2013).
    [CrossRef]
  8. V. Intaraprasonk and S. Fan, Opt. Lett. 38, 3264 (2013).
    [CrossRef]
  9. A. Salandrino and D. N. Christodoulides, Opt. Lett 36, 3103 (2011).
    [CrossRef]
  10. A. V. Maslov, Phys. Rev. Lett. 112, 113903 (2014).
    [CrossRef]
  11. M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
    [CrossRef]
  12. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, Opt. Lett. 37, 91 (2012).
    [CrossRef]
  13. K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, Opt. Lett. 38, 1301 (2013).
    [CrossRef]
  14. J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, Appl. Phys. Lett. 94, 011102 (2009).
    [CrossRef]
  15. Z. Guo and H. Quan, J. Heat Transfer 129, 44 (2007).
    [CrossRef]
  16. A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, J. Opt. Soc. Am. A 25, 1169 (2008).
    [CrossRef]
  17. R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
    [CrossRef]

2014 (1)

A. V. Maslov, Phys. Rev. Lett. 112, 113903 (2014).
[CrossRef]

2013 (5)

K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, Opt. Lett. 38, 1301 (2013).
[CrossRef]

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

A. V. Maslov, V. N. Astratov, and M. I. Bakunov, Phys. Rev. A 87, 053848 (2013).
[CrossRef]

A. S. Shalin and S. V. Sukhov, Plasmonics 8, 625 (2013).
[CrossRef]

V. Intaraprasonk and S. Fan, Opt. Lett. 38, 3264 (2013).
[CrossRef]

2012 (2)

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, Opt. Lett. 37, 91 (2012).
[CrossRef]

R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
[CrossRef]

2011 (1)

A. Salandrino and D. N. Christodoulides, Opt. Lett 36, 3103 (2011).
[CrossRef]

2009 (2)

P. T. Rakich, M. A. Popović, and Z. Wang, Opt. Express 17, 18116 (2009).
[CrossRef]

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, Appl. Phys. Lett. 94, 011102 (2009).
[CrossRef]

2008 (1)

2007 (2)

1999 (1)

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

1977 (1)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Astratov, V. N.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

A. V. Maslov, V. N. Astratov, and M. I. Bakunov, Phys. Rev. A 87, 053848 (2013).
[CrossRef]

Bakunov, M. I.

A. V. Maslov, V. N. Astratov, and M. I. Bakunov, Phys. Rev. A 87, 053848 (2013).
[CrossRef]

Boriskin, A. V.

Boriskina, S. V.

Carnegie, D.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

Chan, C. T.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, Appl. Phys. Lett. 94, 011102 (2009).
[CrossRef]

Christodoulides, D. N.

A. Salandrino and D. N. Christodoulides, Opt. Lett 36, 3103 (2011).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Erickson, D.

Euser, T. G.

Fan, S.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Garbos, M. K.

Guo, Z.

Z. Guo and H. Quan, J. Heat Transfer 129, 44 (2007).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Havukainen, A.

R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
[CrossRef]

Intaraprasonk, V.

Kaivola, M.

R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
[CrossRef]

Khakimov, R.

R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
[CrossRef]

Kosma, K.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Lewandowski, H. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Li, Y.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

Lin, Z. F.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, Appl. Phys. Lett. 94, 011102 (2009).
[CrossRef]

Lindfors, K.

R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
[CrossRef]

Lipson, M.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Maslov, A. V.

A. V. Maslov, Phys. Rev. Lett. 112, 113903 (2014).
[CrossRef]

A. V. Maslov, V. N. Astratov, and M. I. Bakunov, Phys. Rev. A 87, 053848 (2013).
[CrossRef]

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

Ng, J.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, Appl. Phys. Lett. 94, 011102 (2009).
[CrossRef]

Nosich, A. I.

Pastel, R.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Pissadakis, S.

Popovic, M. A.

Quan, H.

Z. Guo and H. Quan, J. Heat Transfer 129, 44 (2007).
[CrossRef]

Rafailov, E.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

Rakich, P. T.

Renn, M. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Rolland, A.

Russell, P. S. J.

Salandrino, A.

A. Salandrino and D. N. Christodoulides, Opt. Lett 36, 3103 (2011).
[CrossRef]

Sauleau, R.

Schmidt, B. S.

Schmidt, O. A.

Schuster, K.

Shalin, A. S.

A. S. Shalin and S. V. Sukhov, Plasmonics 8, 625 (2013).
[CrossRef]

Shevchenko, A.

R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
[CrossRef]

Sukhov, S. V.

A. S. Shalin and S. V. Sukhov, Plasmonics 8, 625 (2013).
[CrossRef]

Svitelskiy, O. V.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

Wang, Z.

Xiao, J. J.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, Appl. Phys. Lett. 94, 011102 (2009).
[CrossRef]

Yang, A. H. J.

Zito, G.

Appl. Phys. Lett. (1)

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, Appl. Phys. Lett. 94, 011102 (2009).
[CrossRef]

J. Heat Transfer (1)

Z. Guo and H. Quan, J. Heat Transfer 129, 44 (2007).
[CrossRef]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, Light Sci. Appl. 2, e64 (2013).
[CrossRef]

Opt. Commun. (1)

R. Khakimov, A. Shevchenko, A. Havukainen, K. Lindfors, and M. Kaivola, Opt. Commun. 285, 4571 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett (1)

A. Salandrino and D. N. Christodoulides, Opt. Lett 36, 3103 (2011).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

A. V. Maslov, V. N. Astratov, and M. I. Bakunov, Phys. Rev. A 87, 053848 (2013).
[CrossRef]

Phys. Rev. Lett. (3)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

A. V. Maslov, Phys. Rev. Lett. 112, 113903 (2014).
[CrossRef]

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Plasmonics (1)

A. S. Shalin and S. V. Sukhov, Plasmonics 8, 625 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Geometry and operation principle of a ROG with parallel plate waveguide. (b) Cross section of possible 3D ROG realization.

Fig. 2.
Fig. 2.

(a) Propagation wavenumber h (normalized to k=ω/c) as a function of the size parameter kL for the modes of the waveguide shown in Fig. 1(a) with εb=1 and εp=2. The modes are labeled according to their symmetry (s, symmetric; a, antisymmetric) and order. (b) Distribution of the magnetic field Hz(y) for s0, a0, and s1 at kL=10.

Fig. 3.
Fig. 3.

Dependence of the scattering characteristics of ROG on size kR when the incident mode is s0 or s1. (a) Number of guided symmetric modes. (b) Transmitted power Pt/P0, (c) reflected power Pr/P0, and (d) and (e) scattered powers Psc±/P0 for εb=1, εp=2, εs=1.4, and kd=1.5.

Fig. 4.
Fig. 4.

Propelling force created by modes s0 and s1.

Fig. 5.
Fig. 5.

Density of the normalized magnetic component of force cFxm(r,φ)/(k2P0) (unitless) at resonance kR=34.96.

Fig. 6.
Fig. 6.

Angular dependence of the electric Fxe(φ) and magnetic Fxm(φ) force components at resonance kR=34.96.

Fig. 7.
Fig. 7.

Angular dependence of the envelopes F0(φ), Fs(φ), and ξ(φ) for the propelling force at kR=34.96.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G1(x,y;x,y)=i4πdheih(xx)gb(h)r˜A(y,y)1r˜2,
Pt=Pi+,Pr=Pi,Psc±=jiPj±.
cΔMx=niP0jinj(Pj+Pj),
Fx=02πdφ[Fxe(φ)+Fxm(φ)],Fxm(φ)=0RdrrFxm(r,φ),
Fx(φ)=F0(φ)Fs(φ)sin(2nφ+ξ(φ)),

Metrics