Abstract

We demonstrate an optical bistability in a laser system with incoherent optical feedback and a nanosuspension as a nonlinear element. The optical transfer function is shown to exhibit a hysteresis loop for the light power in the range of a few milliwatts. It has been found that the optical bistability relies on the incoherent optical feedback and thermal defocusing nonlinear optical response of the nanosuspension.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. W. M. Lee, R. El-Ganainy, D. N. Christodoulides, K. Dholakia, and E. M. Wright, Opt. Express 17, 10277 (2009).
    [CrossRef]
  3. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, and A. E. Kaplan, Opt. Lett. 6, 345 (1981).
    [CrossRef]
  4. P. W. Smith, A. Ashkin, J. E. Bjorkholm, and D. J. Eilenberger, Opt. Lett. 9, 131 (1984).
    [CrossRef]
  5. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
    [CrossRef]
  6. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
    [CrossRef]
  7. J. S. Wang, J. Hu, X. H. Liu, and Z. Zhen, J. Mater. Chem. 17, 1597 (2007).
    [CrossRef]
  8. A. Polman and F. C. J. M. van Veggel, J. Opt. Soc. Am. B 21, 871 (2004).
    [CrossRef]
  9. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
    [CrossRef]
  10. A. Rafael, Z. Escalona, and C. Rosi, Opt. Eng. 38, 1591 (1999).
    [CrossRef]
  11. W. J. Firth and C. Paré, Opt. Lett. 13, 1096 (1988).
    [CrossRef]
  12. R. Ju and P. S. Spencer, J. Lightwave Technol. 23, 2513 (2005).
    [CrossRef]

2009

2007

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

J. S. Wang, J. Hu, X. H. Liu, and Z. Zhen, J. Mater. Chem. 17, 1597 (2007).
[CrossRef]

2006

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

2005

2004

1999

A. Rafael, Z. Escalona, and C. Rosi, Opt. Eng. 38, 1591 (1999).
[CrossRef]

1989

1988

1984

1981

Ashkin, A.

Bjorkholm, J. E.

Christodoulides, D. N.

Dholakia, K.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Eilenberger, D. J.

El-Ganainy, R.

Escalona, Z.

A. Rafael, Z. Escalona, and C. Rosi, Opt. Eng. 38, 1591 (1999).
[CrossRef]

Firth, W. J.

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Hu, J.

J. S. Wang, J. Hu, X. H. Liu, and Z. Zhen, J. Mater. Chem. 17, 1597 (2007).
[CrossRef]

Ju, R.

Kaplan, A. E.

Lee, W. M.

Liu, X. H.

J. S. Wang, J. Hu, X. H. Liu, and Z. Zhen, J. Mater. Chem. 17, 1597 (2007).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Paré, C.

Polman, A.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Rafael, A.

A. Rafael, Z. Escalona, and C. Rosi, Opt. Eng. 38, 1591 (1999).
[CrossRef]

Rosi, C.

A. Rafael, Z. Escalona, and C. Rosi, Opt. Eng. 38, 1591 (1999).
[CrossRef]

Said, A. A.

Sheik-Bahae, M.

Smith, P. W.

Spencer, P. S.

Tomlinson, W. J.

Van Stryland, E. W.

van Veggel, F. C. J. M.

Wang, J. S.

J. S. Wang, J. Hu, X. H. Liu, and Z. Zhen, J. Mater. Chem. 17, 1597 (2007).
[CrossRef]

Wright, E. M.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Zhen, Z.

J. S. Wang, J. Hu, X. H. Liu, and Z. Zhen, J. Mater. Chem. 17, 1597 (2007).
[CrossRef]

J. Lightwave Technol.

J. Mater. Chem.

J. S. Wang, J. Hu, X. H. Liu, and Z. Zhen, J. Mater. Chem. 17, 1597 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Opt. Eng.

A. Rafael, Z. Escalona, and C. Rosi, Opt. Eng. 38, 1591 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Other

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical characterization of the nonlinear nanosuspension. (a) Absorption spectrum, the dashed line is for the 15 wt. % suspension of undoped LaF3 nanoparticles, the solid line is for the 15 wt. % suspension of doped LaF3:Er,Yb nanoparticles. (b) Z-scan curves for the 15 wt. % suspension of doped LaF3:Er,Yb nanoparticles in toluene at optical powers ranging from 0.1 to 1 mW, the dashed line shows the response of pure toluene at 10 mW.

Fig. 2.
Fig. 2.

Experimental setup for investigation of optical bistability and hysteresis.

Fig. 3.
Fig. 3.

Experimental demonstration of optical bistability. (a) Output light intensity at the beam center at the CCD camera as a function of laser-diode current for pure toluene (squares), 15 wt. % suspension of undoped LaF3 nanoparticles (triangles), and hysteresis loop for 15 wt. % suspension of doped LaF3:Er,Yb nanoparticles (points). (b) Output beam profile in the high-intensity state. (c) Output beam profile in the low-intensity state. Inset (d) shows temporal dependence of switching.

Fig. 4.
Fig. 4.

Conditions for observation of the bistability. (a) Influence of nanosuspension concentration, squares are for 8 wt. %; points are for 15 wt. %; and triangles are for 27 wt. %. (b) Influence of optical feedback (mirror reflectivity), squares are for R=0.14 and points are for R=0.57.

Fig. 5.
Fig. 5.

Incoherent optical feedback. (a) Laser-diode watt–ampere characteristics without optical feedback and for maximum optical feedback coefficient (R=0.57). (b) Laser-diode output power as a function of optical feedback coefficient at a fixed pump current (30 mA).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

πλn2I·lπ4.
dE(t)dt=(1+iα)N(t)E(t)+ηE(tτ)exp(iΩτ)+FE(t),τsτpdN(t)dt=PN(t)(1+2N(t))|E(t)|2+FN(t),

Metrics