Abstract

We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitude optical filtering approaches using a Fabry–Perot filter. The proposed concept is validated through recovery of the optical clock from a 640Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
    [CrossRef]
  2. J. Luo, N. Calabretta, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, Opt. Lett. 38, 4805 (2013).
    [CrossRef]
  3. Z. Wang and S. Fan, Phys. Rev. 68, 066616 (2003).
  4. J. T. Willits, A. M. Weiner, and S. T. Cundiff, Opt. Express 20, 3110 (2012).
    [CrossRef]
  5. Y. Ding, H. Hu, M. Galili, J. Xu, L. Liu, M. Pu, H. C. H. Mulvad, L. K. Oxenløwe, C. Peucheret, P. Jeppesen, X. Zhang, D. Huang, and H. Ou, Opt. Express 19, 6471 (2011).
    [CrossRef]
  6. L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
    [CrossRef]

2013

2012

2011

2009

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
[CrossRef]

2008

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

2003

Z. Wang and S. Fan, Phys. Rev. 68, 066616 (2003).

Azana, J.

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Calabretta, N.

Clausen, A. T.

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Cundiff, S. T.

Ding, Y.

Dorren, H. J. S.

Fan, S.

Z. Wang and S. Fan, Phys. Rev. 68, 066616 (2003).

Galili, M.

Y. Ding, H. Hu, M. Galili, J. Xu, L. Liu, M. Pu, H. C. H. Mulvad, L. K. Oxenløwe, C. Peucheret, P. Jeppesen, X. Zhang, D. Huang, and H. Ou, Opt. Express 19, 6471 (2011).
[CrossRef]

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Honkanen, S.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
[CrossRef]

Hu, H.

Huang, D.

Jeppesen, P.

Y. Ding, H. Hu, M. Galili, J. Xu, L. Liu, M. Pu, H. C. H. Mulvad, L. K. Oxenløwe, C. Peucheret, P. Jeppesen, X. Zhang, D. Huang, and H. Ou, Opt. Express 19, 6471 (2011).
[CrossRef]

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Küppers, F.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
[CrossRef]

Landais, P.

Latkowski, S.

Liu, L.

Ludvigsen, H.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
[CrossRef]

Luo, J.

Maldonado-Basilio, R.

Mulvad, H. C. H.

Y. Ding, H. Hu, M. Galili, J. Xu, L. Liu, M. Pu, H. C. H. Mulvad, L. K. Oxenløwe, C. Peucheret, P. Jeppesen, X. Zhang, D. Huang, and H. Ou, Opt. Express 19, 6471 (2011).
[CrossRef]

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Ou, H.

Oxenløwe, L. K.

Y. Ding, H. Hu, M. Galili, J. Xu, L. Liu, M. Pu, H. C. H. Mulvad, L. K. Oxenløwe, C. Peucheret, P. Jeppesen, X. Zhang, D. Huang, and H. Ou, Opt. Express 19, 6471 (2011).
[CrossRef]

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Park, Y.

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Parra-Cetina, J.

Peucheret, C.

Pu, M.

Slavik, R.

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Tervonen, A.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
[CrossRef]

von Lerber, T.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
[CrossRef]

Wang, Z.

Z. Wang and S. Fan, Phys. Rev. 68, 066616 (2003).

Weiner, A. M.

Willits, J. T.

Xu, J.

Zhang, X.

IEEE J. Sel. Top. Quantum Electron.

L. K. Oxenløwe, R. Slavık, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, and P. Jeppesen, IEEE J. Sel. Top. Quantum Electron. 14, 566 (2008).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, Opt. Fiber Technol. 15, 363 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev.

Z. Wang and S. Fan, Phys. Rev. 68, 066616 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Principle of the optical clock recovery methods based on amplitude (left) and phase-only (right) filtering. F stands for Fourier transform.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of the FPF and (b) spectral phase profile of the phase filter, used for numerical simulations.

Fig. 3.
Fig. 3.

Simulation results of all-optical clock recovery from a 640Gbit/s input signal. Temporal waveforms and optical spectra of (a) and (b) the input signal, (c) and (d) the recovered optical clock using amplitude filter, and (e) and (f) the recovered clock using phase filter.

Fig. 4.
Fig. 4.

Results from numerical simulations: (a) and (b) persistent-mode waveforms of the recovered clock signals in Figs 2(a) and 2(c), respectively; (c) amplitude modulation versus filter finesse; and (d) output versus input rms jitter. FPF: Fabry–Perot filter, PF: phase filter.

Fig. 5.
Fig. 5.

Experimental setup of the all-optical clock recovery technique using a phase-only filter.

Fig. 6.
Fig. 6.

Spectra of the original OTDM (blue) and wavelength converted RZ (green) signals, as well as spectral phase profile of the used phase filter (red).

Fig. 7.
Fig. 7.

Temporal traces of the 640Gbit/s coherent input data signal and the extracted clock signal.

Fig. 8.
Fig. 8.

Corresponding (a) eye diagram of the input data and (b) persistent-mode waveform of recovered clock signals in Fig. 7.

Metrics