Abstract

A novel polarization rotator (PR) based on mode coupling in plasmonic waveguides is demonstrated by simulation. A silicon waveguide with asymmetric claddings of silicon oxide and metal is applied to induce a hybridization of the polarization modes. Operating at the telecommunication wavelength of 1.55 μm, polarization conversion efficiency of 99.7% can be achieved in a device at a length of 9.7 μm with an insertion loss of 2.2 dB. This PR can be easily fabricated by oblique deposition of the claddings after etching the silicon waveguide without precise alignment for two-step lithography as required in a previous design.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000).
    [CrossRef]
  2. Y. G. Qin, Y. Yu, J. H. Zou, M. Y. Ye, L. Xiang, and X. L. Zhang, Opt. Express 21, 25727 (2013).
    [CrossRef]
  3. H. Keang-Po and J. M. Kahn, J. Lightwave Technol. 32, 614 (2014).
    [CrossRef]
  4. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
    [CrossRef]
  5. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
    [CrossRef]
  6. V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
    [CrossRef]
  7. H. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, J. Lightwave Technol. 23, 432 (2005).
    [CrossRef]
  8. Z. C. Wang and D. X. Dai, J. Opt. Soc. Am. B 25, 747 (2008).
    [CrossRef]
  9. M. R. Watts and H. A. Haus, Opt. Lett. 30, 138 (2005).
    [CrossRef]
  10. J. N. Caspers, M. Z. Alam, and M. Mojahedi, Opt. Lett. 37, 4615 (2012).
    [CrossRef]
  11. Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
    [CrossRef]
  12. R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
    [CrossRef]
  13. H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
    [CrossRef]
  14. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
    [CrossRef]
  15. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, Opt. Express 16, 2628 (2008).
    [CrossRef]
  16. G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, Opt. Lett. 38, 1984 (2013).
    [CrossRef]
  17. L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013).
    [CrossRef]
  18. J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
    [CrossRef]
  19. M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 4, 707 (2012).
  20. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
    [CrossRef]
  21. L. Jin, Q. Chen, and S. C. Song, Opt. Lett. 38, 3078 (2013).
    [CrossRef]
  22. D. Correia, J. P. da Silva, and I. T. Lima, IEEE Photon. Technol. Lett. 15, 915 (2003).
    [CrossRef]
  23. http://www.lumerical.com .
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2014 (1)

2013 (6)

Y. G. Qin, Y. Yu, J. H. Zou, M. Y. Ye, L. Xiang, and X. L. Zhang, Opt. Express 21, 25727 (2013).
[CrossRef]

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
[CrossRef]

Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
[CrossRef]

G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, Opt. Lett. 38, 1984 (2013).
[CrossRef]

L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013).
[CrossRef]

L. Jin, Q. Chen, and S. C. Song, Opt. Lett. 38, 3078 (2013).
[CrossRef]

2012 (3)

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 4, 707 (2012).

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

J. N. Caspers, M. Z. Alam, and M. Mojahedi, Opt. Lett. 37, 4615 (2012).
[CrossRef]

2011 (1)

J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

2008 (3)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

2005 (2)

2003 (1)

D. Correia, J. P. da Silva, and I. T. Lima, IEEE Photon. Technol. Lett. 15, 915 (2003).
[CrossRef]

2000 (1)

B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000).
[CrossRef]

1996 (1)

V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
[CrossRef]

1992 (1)

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

1980 (1)

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[CrossRef]

Aamer, M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Alam, M. Z.

Albrecht, P.

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

Alferness, R. C.

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Brimont, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Brooks, C.

Cao, T. T.

Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
[CrossRef]

Cao, Y. M.

Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
[CrossRef]

Caspers, J. N.

Chen, G.

Chen, L.

Chen, Q.

Chen, S. W.

Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
[CrossRef]

Chen, S. Y.

J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Correia, D.

D. Correia, J. P. da Silva, and I. T. Lima, IEEE Photon. Technol. Lett. 15, 915 (2003).
[CrossRef]

da Silva, J. P.

D. Correia, J. P. da Silva, and I. T. Lima, IEEE Photon. Technol. Lett. 15, 915 (2003).
[CrossRef]

Dai, D.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
[CrossRef]

Dai, D. X.

Deng, H. H.

Ding, W.

Fedeli, J. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Fei, Y. H.

Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
[CrossRef]

Feng, R.

Fontaine, M.

V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
[CrossRef]

Fukuda, H.

Gao, L. F.

L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013).
[CrossRef]

Gao, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
[CrossRef]

Geiser, C.

B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Gisin, N.

B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000).
[CrossRef]

Gutierrez, A. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Hakansson, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Hamacher, M.

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

Harris, J. S.

L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013).
[CrossRef]

Haus, H. A.

He, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
[CrossRef]

Heidrich, H.

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

Huo, Y. J.

L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013).
[CrossRef]

Huttner, B.

B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Itabashi, S.-i.

Jessop, P. E.

Jin, L.

Kahn, J. M.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Keang-Po, H.

Komatsu, M.

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 4, 707 (2012).

Koshiba, M.

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 4, 707 (2012).

Kwong, D. L.

J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Lima, I. T.

D. Correia, J. P. da Silva, and I. T. Lima, IEEE Photon. Technol. Lett. 15, 915 (2003).
[CrossRef]

Liu, L.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
[CrossRef]

Lo, G. Q.

J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Mojahedi, M.

Nolting, H. P.

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Qin, Y. G.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Roelkens, G.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Saitoh, K.

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 4, 707 (2012).

Sanchis, P.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Schroeter-Janssen, H.

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Song, S. C.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Sun, F.

Tsuchizawa, T.

Tzolov, V. P.

V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
[CrossRef]

Vermeulen, D.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

Wang, Z. C.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

M. R. Watts and H. A. Haus, Opt. Lett. 30, 138 (2005).
[CrossRef]

Weinert, C. M.

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

Xiang, L.

Xu, D.-X.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
[CrossRef]

Yamada, K.

Ye, M. Y.

Yevick, D. O.

Yu, Y.

Zhang, J.

J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Zhang, L. B.

Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Zhang, X. L.

Zhou, Z. P.

L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013).
[CrossRef]

Zhu, S. Y.

J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Zou, J. H.

Appl. Phys. Lett. (1)

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992).
[CrossRef]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012).
[CrossRef]

L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013).
[CrossRef]

J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 4, 707 (2012).

D. Correia, J. P. da Silva, and I. T. Lima, IEEE Photon. Technol. Lett. 15, 915 (2003).
[CrossRef]

Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013).
[CrossRef]

Nat. Photonics (2)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Opt. Commun. (1)

V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (2)

http://www.lumerical.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic cross section of the proposed mode-coupling plasmonic waveguide PR.

Fig. 2.
Fig. 2.

(a), (b) Electric and (c), (d) magnetic field profiles of hybrid mode 1 (a) and (c), hybrid mode 2 (b) and (d). WSi=HSi=310nm, WSiO2=HSiO2=50nm, WAg=HAg=80nm.

Fig. 3.
Fig. 3.

(a) CE and conversion length (LC), (b) PCE and rotation angle (θ) versus WSi(=HSi) at WSiO2=HSiO2=50nm and WAg=HAg=30nm, 50, 100, and 150 nm, respectively.

Fig. 4.
Fig. 4.

Propagation loss of two hybrid modes and LC versus WSiO2(=HSiO2) at WSi=HSi=300nm and WAg=HAg=50nm, respectively.

Fig. 5.
Fig. 5.

Transverse electric field distributions in the xz plane at the center of Si core for (a), (b) TM and (c), (d) TE polarization input. WSi=HSi=310nm, WSiO2=HSiO2=50nm, and WAg=HAg=80nm.

Fig. 6.
Fig. 6.

Wavelength dependence of the PCE and IL. WSi=HSi=310nm, WSiO2=HSiO2=50nm, and WAg=HAg=80nm.

Fig. 7.
Fig. 7.

Dependence of PCE on the deviation of the conversion length. WSi=HSi=310nm, WSiO2=HSiO2=50nm, and WAg=HAg=80nm.

Fig. 8.
Fig. 8.

Optimized device for the PCE via using different heights and widths of the Si core and SiO2 layer. (a), (b) Electric and (c), (d) magnetic field profiles of hybrid mode 1 (a) and (c), hybrid mode 2 (b) and (d). HSi=250nm, WSi=360nm, HSiO2=40nm, WSiO2=50nm, WAg=HAg=100nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PCE=sin2(2θ)sin2(πL2LC).
tan(θ)=R=Hx2(x,y)dxdyHy2(x,y)dxdy.

Metrics