Abstract

We demonstrated achromatic half- and quarter-wave plates for broadband terahertz pulses using phase retardation by internal total reflection. Prism-type wave plates realized ultra-broadband retardation stability up to 2.5 THz, which was the limitation of our experimental setup. Novel aspects of our work were use of a 3λ/4 plate as a quarter-wave plate and a multistacked prism-type (MSP) wave plate for a large-aperture THz beam. Real-time polarization imaging of two crossed bunches of hairs was performed to show the efficiency of the MSP wave plate. We clearly observed polarization dependence of the hair direction.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
    [CrossRef]
  2. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, Opt. Lett. 27, 1312 (2002).
    [CrossRef]
  3. N. Yasumatsu and S. Watanabe, Opt. Lett. 37, 2706 (2012).
    [CrossRef]
  4. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
    [CrossRef]
  5. N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, Opt. Lett. 36, 265 (2011).
    [CrossRef]
  6. K. J. Chau, Opt. Lett. 35, 1187 (2010).
    [CrossRef]
  7. J.-B. Masson and G. Gallot, Opt. Lett. 31, 265 (2006).
    [CrossRef]
  8. A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, Appl. Opt. 52, B60 (2013).
    [CrossRef]
  9. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, Opt. Lett. 39, 146 (2014).
    [CrossRef]
  10. M. Li, H. Pan, Y. Tong, C. Chen, Y. Shi, J. Wu, and H. Zeng, Opt. Lett. 36, 3633 (2011).
    [CrossRef]
  11. K. Lee, M. Yi, J. D. Song, and J. Ahn, Opt. Express 20, 12463 (2012).
    [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  13. J. Shan, J. I. Dadap, and T. F. Heinz, Opt. Express 17, 7431 (2009).
    [CrossRef]
  14. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, J. Opt. Soc. Am. B 21, 1379 (2004).
    [CrossRef]
  15. N. J. Harrick, Internal Reflection Spectroscopy, (Harrick Scientific Corporation, 1967).
  16. T. Yasuda, Y. Kawada, H. Toyoda, and H. Takahashi, Opt. Express 15, 15583 (2007).
    [CrossRef]
  17. H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
    [CrossRef]

2014 (1)

2013 (2)

2012 (2)

2011 (2)

2010 (1)

2009 (1)

2007 (1)

2006 (1)

2004 (1)

2002 (1)

2001 (1)

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

1990 (1)

Abbot, D.

Ahn, J.

Ashida, M.

Birk, M.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Chau, K. J.

Chen, C.

Dadap, J. I.

Dai, J.

Danilov, S. N.

Deyanov, R. Z.

Exter, M.

Fattinger, C.

Ferguson, B.

Gallot, G.

Ganichev, S. D.

Gershenzon, E.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Gol’tsman, G.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Gray, D.

Grischkowsky, D.

Hangyo, M.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy, (Harrick Scientific Corporation, 1967).

Heinz, T. F.

Higuchi, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Hosokura, T.

Hübers, H.-W.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Ivanov, A. A.

Kanda, N.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Kaveev, A. K.

Kaveeva, E. G.

Kawada, Y.

Keiding, S.

Konishi, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Krabbe, A.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Kropotov, G. I.

Kuwata-Gonokami, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Lee, K.

Li, M.

Masson, J.-B.

Matsumoto, N.

Minowa, Y.

Misawa, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Mukai, N.

Nagai, M.

Nagashima, T.

Ohtake, H.

Olbrich, P.

Pan, H.

Redlich, B.

Sato, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Schubert, J.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Semenov, A.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Shan, J.

Shi, Y.

Song, J. D.

Suzuki, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Takahashi, H.

Takayanagi, J.

Tong, Y.

Toyoda, H.

Tsygankova, E. V.

Tzibizov, I. A.

Voronov, B.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Wagner, G.

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

Wang, S.

Watanabe, S.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Wu, J.

Yasuda, T.

Yasumatsu, N.

Yi, M.

Yoshioka, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Zeng, H.

Zhang, J.

Zhang, W.

Zhang, X.-C.

Zhdanov, A. I.

Zoth, C.

Appl. Opt. (1)

Infrared Phys. Technol. (1)

H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol’tsman, B. Voronov, and E. Gershenzon, Infrared Phys. Technol. 42, 41 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, Nat. Photonics 7, 724 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Other (2)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

N. J. Harrick, Internal Reflection Spectroscopy, (Harrick Scientific Corporation, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Calculated incident-angle dependence of phase retardation due to a single total internal reflection. The case of Si is represented by the black line and that of a plastic (ZEONEX; cyclo-olefin polymer) is represented by the gray line. Side views of (b) a three-reflection type prism and (c) a four-reflection type prism. The gray line shows the light path. The angles α , β , and γ are the prism parameters shown in Table 1. (d) Perspective view of the MSP wave plate.

Fig. 2.
Fig. 2.

Measured phase retardation of the half-wave plate (black line) and quarter-wave plate (gray line). To emphasize that the phase retardation of our quarter-wave plate is 3 λ / 4 , the signs of these results are opposite.

Fig. 3.
Fig. 3.

Temporal waveform of THz pulses plotted in 3D space defined by X amplitude, Y amplitude, and time when the quarter-wave plate was rotated to (a)  + 45 ° and (b)  45 ° .

Fig. 4.
Fig. 4.

(a) Photograph of imaging sample (two crossed bunches of hairs). Real-time THz transmission images obtained with (b) a vertically polarized THz pulse and (c) a horizontally polarized THz pulse.

Tables (1)

Tables Icon

Table 1. Parameters of Prisms

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tan δ 2 = cos θ i sin 2 θ i n 2 sin 2 θ i ,

Metrics