Abstract

We demonstrate that nanoparticle x-ray fluorescence computed tomography in mouse-sized objects can be performed with very high spatial resolution at acceptable dose and exposure times with a compact laboratory system. The method relies on the combination of the 24 keV line-emission from a high-brightness liquid-metal-jet x-ray source, pencil-beam-forming x-ray optics, photon-counting energy-dispersive detection, and carefully matched (Mo) nanoparticles. Phantom experiments and simulations show that the arrangement significantly reduces Compton background and allows 100 μm detail imaging at dose and exposure times compatible with small-animal experiments. The method provides a possible path to in vivo molecular x-ray imaging at sub-100 μm resolution in mice.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of two x-ray phase-contrast imaging methods with a microfocus source

T. Zhou, U. Lundström, T. Thüring, S. Rutishauser, D. H. Larsson, M. Stampanoni, C. David, H. M. Hertz, and A. Burvall
Opt. Express 21(25) 30183-30195 (2013)

Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times

Julien Pichette, Jorge Bouza Domínguez, and Yves Bérubé-Lauzière
Appl. Opt. 52(24) 5985-5999 (2013)

X-ray luminescence optical tomography imaging: experimental studies

Changqing Li, Kun Di, Julien Bec, and Simon R. Cherry
Opt. Lett. 38(13) 2339-2341 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription