Abstract

We report on observation of particle cones formed by optical trapping of absorbing particles in air using two sets of simple geometric optical schemes. Further, the trapped particles on a cone in both schemes are size-sorted with large particles or particle ensembles close to the cone vertex. This new experimental observation shows an excellent example of 3D particle trapping between the two extreme cases, photon radiation trapping of nonabsorbing particles and photophoretic trapping of strongly absorbing particles; and the observation may challenge theoretical calculations of the trapping forces applied in this case.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [Crossref]
  2. D. G. Grier, Nature 424, 810 (2003).
    [Crossref]
  3. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [Crossref]
  4. O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).
  5. R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401 (2013).
    [Crossref]
  6. P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Phys. Lett. 86, 074103 (2005).
    [Crossref]
  7. M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
    [Crossref]
  8. M. H. Rosen and C. Orr, J. Colloid Sci. 19, 50 (1964).
    [Crossref]
  9. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [Crossref]
  10. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Opt. Express 17, 5743 (2009).
    [Crossref]
  11. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
    [Crossref]
  12. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
    [Crossref]
  13. V. G. Shvedov, C. Hnatovsky, N. Shostka, A. V. Rode, and W. Krolikowski, Opt. Lett. 37, 1934 (2012).
    [Crossref]
  14. M. Esseling, P. Rose, C. Alpmann, and C. Denz, Appl. Phys. Lett. 101, 131115 (2012).
    [Crossref]
  15. Y. L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
    [Crossref]
  16. S. Beresnev, V. Chernyak, and G. Fomyagin, Phys. Fluids A 5, 2043 (1993).
    [Crossref]
  17. S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
    [Crossref]
  18. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Opt. Express 17, 8201–8211 (2009).
    [Crossref]
  19. M. Yang, K. F. Ren, M. Gou, and X. Sheng, Opt. Lett. 38, 1784 (2013).
    [Crossref]

2013 (3)

O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

M. Yang, K. F. Ren, M. Gou, and X. Sheng, Opt. Lett. 38, 1784 (2013).
[Crossref]

2012 (3)

2010 (2)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
[Crossref]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

2009 (2)

2005 (1)

P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

2003 (1)

D. G. Grier, Nature 424, 810 (2003).
[Crossref]

1993 (1)

S. Beresnev, V. Chernyak, and G. Fomyagin, Phys. Fluids A 5, 2043 (1993).
[Crossref]

1986 (1)

1982 (2)

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

1964 (1)

M. H. Rosen and C. Orr, J. Colloid Sci. 19, 50 (1964).
[Crossref]

Alpmann, C.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, Appl. Phys. Lett. 101, 131115 (2012).
[Crossref]

Arnold, S.

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

Ashkin, A.

Beresnev, S.

S. Beresnev, V. Chernyak, and G. Fomyagin, Phys. Fluids A 5, 2043 (1993).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

Bowman, R. W.

R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

Chernyak, V.

S. Beresnev, V. Chernyak, and G. Fomyagin, Phys. Fluids A 5, 2043 (1993).
[Crossref]

Chu, S.

Coleman, M.

Daria, V. R.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

Denz, C.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, Appl. Phys. Lett. 101, 131115 (2012).
[Crossref]

Desyatnikov, A. S.

Dziedzic, J. M.

Esseling, M.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, Appl. Phys. Lett. 101, 131115 (2012).
[Crossref]

Ferrari, A. C.

O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

Fomyagin, G.

S. Beresnev, V. Chernyak, and G. Fomyagin, Phys. Fluids A 5, 2043 (1993).
[Crossref]

Glückstad, J.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

Gou, M.

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[Crossref]

Gucciardi, P. G.

O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

Hill, S. C.

Hnatovsky, C.

Izdebskaya, Y. V.

Jones, P. H.

O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

Kivshar, Y. S.

Krolikowski, W.

Lewittes, M.

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

Maragòl, O. M.

O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

Orr, C.

M. H. Rosen and C. Orr, J. Colloid Sci. 19, 50 (1964).
[Crossref]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

Padgett, M. J.

R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

Pan, Y. L.

Ren, K. F.

Rode, A. V.

Rodrigo, P. J.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

Rose, P.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, Appl. Phys. Lett. 101, 131115 (2012).
[Crossref]

Rosen, M. H.

M. H. Rosen and C. Orr, J. Colloid Sci. 19, 50 (1964).
[Crossref]

Sheng, X.

Shostka, N.

Shvedov, V. G.

Volpe, G.

O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

Yang, M.

Appl. Phys. Lett. (3)

P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

M. Esseling, P. Rose, C. Alpmann, and C. Denz, Appl. Phys. Lett. 101, 131115 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[Crossref]

J. Colloid Sci. (1)

M. H. Rosen and C. Orr, J. Colloid Sci. 19, 50 (1964).
[Crossref]

Nat. Nanotechnol. (1)

O. M. Maragòl, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).

Nature (1)

D. G. Grier, Nature 424, 810 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Fluids A (1)

S. Beresnev, V. Chernyak, and G. Fomyagin, Phys. Fluids A 5, 2043 (1993).
[Crossref]

Phys. Rev. Lett. (2)

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

Rep. Prog. Phys. (1)

R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

Supplementary Material (5)

» Media 1: AVI (1539 KB)     
» Media 2: AVI (1255 KB)     
» Media 3: AVI (3992 KB)     
» Media 4: AVI (3994 KB)     
» Media 5: AVI (3013 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the two sets of optical trapping schemes. (a) Symmetric scheme, in which two horizontally counterpropagating hollow beams form two optical cones in a vertex-to-vertex configuration with a small overlapped region at the cone vertex. (b) Asymmetric scheme, in which a single hollow beam forms a vertical cone. (c) and (d) Absorbing particle is trapped by the schemes, respectively, (Media 1).

Fig. 2.
Fig. 2.

(a) Optical trapping of two particles and (b) multiple particles (particle ensembles) using the symmetric trapping scheme [Fig. 1(a)]. The particles were Bermuda grass smut spores (6.2–8.9 μm). (c) Image of the trapped particles in (a). (d) Image of part of the trapped particles in (b) Media 2.

Fig. 3.
Fig. 3.

3D particle cones formed in air by optical trapping. The trapped particles were Bermuda grass smut spores with a size of 6.2–8.9 μm. (a) Horizontally aligned particle cones Media 3. (b) Vertically aligned particle cone Media 4. (c) and (d) Illustration of the optical cones formed in the two schemes, respectively. (e) Examination of scattering effect using a 532 nm laser beam (Media 5).

Fig. 4.
Fig. 4.

(a) Illustration of the cross section of the optical cone field formed in the asymmetric scheme. (b) Force diagrams to illustrate the forces exerted on a trapped particle and how the forces are balanced. A, B, C are different spots in the light field. F1=gravitational force, F2, F4=gradient force in RF, F3=negative PPF, F5=scattering force in RF.

Metrics