Abstract

A dual-core fiber in which one of the cores is doped with germanium and the other with phosphorus is used as an in-line Mach–Zehnder dispersive interferometer. By ensuring an equal length but with different dispersion dependencies in the interferometer arms (the two cores), high-sensitivity strain and temperature sensing are achieved. Opposite sensitivities for high and low wavelength peaks were also demonstrated when strain and temperature was applied. To our knowledge this is the first time that such behavior is demonstrated using this type of in-line interferometer based on a dual-core fiber. A sensitivity of (0.102±0.002)nm/με, between 0and800με and (4.2±0.2)nm/°C between 47°C and 62°C is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz and E. Snitzer, “Fiber optic strain sensor,” WIPO patentWO1981000618 A1 (March5, 1981).
  2. G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, Appl. Opt. 22, 464 (1983).
    [CrossRef]
  3. L. Zhang and C. Yang, J. Lightwave Technol. 22, 1367 (2004).
    [CrossRef]
  4. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, Opt. Express 15, 4795 (2007).
    [CrossRef]
  5. W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192 (2010).
    [CrossRef]
  6. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, Opt. Express 19, 7790 (2011).
    [CrossRef]
  7. X. Sun, Opt. Lett. 32, 2484 (2007).
    [CrossRef]
  8. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, Opt. Lett. 35, 2777 (2010).
    [CrossRef]
  9. G. Town, W. Yuan, R. McCosker, and O. Bang, Opt. Lett. 35, 856 (2010).
    [CrossRef]
  10. D. Wu, B. Kuhlmey, and B. Eggleton, Opt. Lett. 34, 322 (2009).
    [CrossRef]
  11. B. Kim, T. Kim, L. Cui, and Y. Chung, Opt. Express 17, 15502 (2009).
    [CrossRef]
  12. H. F. Martins, M. B. Marques, and O. Frazão, Appl. Phys. B 104, 957 (2011).
    [CrossRef]
  13. S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
    [CrossRef]

2012

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
[CrossRef]

2011

H. F. Martins, M. B. Marques, and O. Frazão, Appl. Phys. B 104, 957 (2011).
[CrossRef]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, Opt. Express 19, 7790 (2011).
[CrossRef]

2010

2009

2007

2004

1983

Bang, O.

Birks, T. A.

Chung, Y.

Cui, L.

Du, J.

Dunphy, J. R.

Eggleton, B.

Frazão, O.

H. F. Martins, M. B. Marques, and O. Frazão, Appl. Phys. B 104, 957 (2011).
[CrossRef]

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, Opt. Lett. 35, 2777 (2010).
[CrossRef]

Guo, J.

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
[CrossRef]

Kim, B.

Kim, T.

Knight, J. C.

Kobelke, J.

Kuhlmey, B.

Li, Z.

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
[CrossRef]

Liu, N.

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
[CrossRef]

Liu, S.

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
[CrossRef]

Liu, Y.

Lu, P.

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
[CrossRef]

Markos, C.

Marques, M. B.

H. F. Martins, M. B. Marques, and O. Frazão, Appl. Phys. B 104, 957 (2011).
[CrossRef]

Martins, H. F.

H. F. Martins, M. B. Marques, and O. Frazão, Appl. Phys. B 104, 957 (2011).
[CrossRef]

McCosker, R.

Meltz, G.

G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, Appl. Opt. 22, 464 (1983).
[CrossRef]

G. Meltz and E. Snitzer, “Fiber optic strain sensor,” WIPO patentWO1981000618 A1 (March5, 1981).

Morey, W. W.

Schuster, K.

Silva, R. M.

Snitzer, E.

G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, Appl. Opt. 22, 464 (1983).
[CrossRef]

G. Meltz and E. Snitzer, “Fiber optic strain sensor,” WIPO patentWO1981000618 A1 (March5, 1981).

Sun, X.

Taru, T.

Town, G.

Town, G. E.

Vlachos, K.

Wang, Y.

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, IEEE Photon. Technol. Lett. 24, 1768 (2012).
[CrossRef]

Wang, Z.

Wu, D.

Yang, C.

Yuan, W.

Zhang, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross section of the dual-core fiber, showing the germanium- and phosphorous-doped cores.

Fig. 2.
Fig. 2.

Theoretical phase (the lines) of the interferometer as a function of the wavelength for fiber at (a) room temperature with no strain, (b) temperature applied, (c) strain applied. The experimental peaks are also represented (dots). The values used in the simulation are presented in the text.

Fig. 3.
Fig. 3.

Experimental setup used to characterize the dual-core fiber as a strain and temperature sensor.

Fig. 4.
Fig. 4.

Shift of the normalized transmission spectrum of the dispersive interferometer with increasing applied (a) strain and (b) temperature.

Fig. 5.
Fig. 5.

Peaks wavelength shift of the dispersive interferometer spectrum as function of the applied (a) strain and (b) temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E⃗i(ω)=E⃗i·ej(L·ki(ω)+ϕ0),
Iout(ω)=I1+I2+2I1I2cos[L·Δk(ω)],
Δk(ω)=Δk(ω0)+(ωω0)Δkω|ω0+(ωω0)2122Δkω2|ω0+,

Metrics