Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Random fiber Bragg grating Raman fiber laser

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate for the first time to our knowledge a Raman random fiber laser (RRFL) based on a long random fiber Bragg grating (RFBG-RRFL). Unlike other recently demonstrated random fiber lasers that rely on incoherent Rayleigh scattering feedback, the present scheme uses randomly distributed phase shifts inside a fiber-meter long Bragg grating as a random coherent feedback mechanism. The laser is pumped at 1480 nm and emits a CW signal at 1576 nm. The emission spectrum is dependent on pump intensity and is shown to exhibit single and multi-mode characteristics. The RRFL shows a relatively low threshold (2.2 W) and a 430kHz FWHM linewidth.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating

Mathieu Gagné and Raman Kashyap
Opt. Express 17(21) 19067-19074 (2009)

More than 200  W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber

Jinyan Dong, Lei Zhang, Jiaqi Zhou, Weiwei Pan, Xijia Gu, and Yan Feng
Opt. Lett. 44(7) 1801-1804 (2019)

All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings

W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang
Opt. Lett. 40(13) 3181-3184 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved