Abstract

In order to meet the demands for applications of optical refrigerators in the fields of spaceflight, aviation, space science, and detection, a 2 wt. % Yb3+-doped LuLiF4 crystal, as a new laser cooling material, was prepared and demonstrated by using a 178 mW diode laser centered at 1015 nm and a resonant extra-cavity scheme with an enhancement factor of 12.8. Cooling efficiency of 1.27% and a temperature drop of 14.3K/W are obtained with 79% of the incident laser power being absorbed. Based on our results, a sample with background absorption of α=4.2×104cm1 can be potentially cooled down to 145K. Our investigation shows that Yb3+-doped LuLiF4 crystal is potentially a promising candidate for solid-state refrigeration.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription