Abstract

Transfer and conversion of images between different wavelengths or polarization has significant applications in optical communication and quantum information processing. We demonstrated the transfer of images based on electromagnetically induced transparency (EIT) in a rubidium vapor cell. In experiments, a 2D image generated by a spatial light modulator is used as a coupling field, and a plane wave served as a signal field. We found that the image carried by coupling field could be transferred to that carried by signal field, and the spatial patterns of transferred image are much better than that of the initial image. It also could be much smaller than that determined by the diffraction limit of the optical system. We also studied the subdiffraction propagation for the transferred image. Our results may have applications in quantum interference lithography and coherent Raman spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
    [CrossRef]
  2. A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
    [CrossRef]
  3. G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
    [CrossRef]
  4. O. N. Verma, L. Zhang, J. Evers, and T. N. Dey, Phys. Rev. A 88, 013810 (2013).
    [CrossRef]
  5. L. Rayleigh, Philos. Mag. 8(49), 261 (1879).
    [CrossRef]
  6. E. Lantz, Nat. Photonics 2, 71 (2008).
    [CrossRef]
  7. B. E. Cohen, Nature 467, 407 (2010).
    [CrossRef]
  8. M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1982).
    [CrossRef]
  9. G. Scarcelli, A. Valencia, and Y. H. Shih, Europhys. Lett. 68, 618 (2004).
    [CrossRef]
  10. S. W. Hell, Science 316, 1153 (2007).
    [CrossRef]
  11. G. S. Agarwal and K. T. Kapale, J. Phys. B 39, 3437 (2006).
    [CrossRef]
  12. M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100, 073602 (2008).
    [CrossRef]
  13. A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
    [CrossRef]
  14. H. S. Park and S. K. Lee, Opt. Express 16, 21982 (2008).
    [CrossRef]
  15. T. N. Dey and G. S. Agarwal, Phys. Rev. A 76, 015802 (2007).
    [CrossRef]
  16. J. Cheng and S. Han, Opt. Lett. 32, 1162 (2007).
    [CrossRef]
  17. T. N. Dey and G. S. Agarwal, Opt. Lett. 34, 3199 (2009).
    [CrossRef]
  18. T. N. Dey and J. Evers, Phys. Rev. A 84, 043842 (2011).
    [CrossRef]
  19. D. S. Ding, Z. Y. Zhou, and B. S. Shi, Opt. Lett. 39, 240 (2014).
    [CrossRef]

2014 (1)

2013 (1)

O. N. Verma, L. Zhang, J. Evers, and T. N. Dey, Phys. Rev. A 88, 013810 (2013).
[CrossRef]

2012 (2)

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
[CrossRef]

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

2011 (1)

T. N. Dey and J. Evers, Phys. Rev. A 84, 043842 (2011).
[CrossRef]

2010 (1)

B. E. Cohen, Nature 467, 407 (2010).
[CrossRef]

2009 (1)

2008 (5)

M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef]

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[CrossRef]

H. S. Park and S. K. Lee, Opt. Express 16, 21982 (2008).
[CrossRef]

E. Lantz, Nat. Photonics 2, 71 (2008).
[CrossRef]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

2007 (3)

T. N. Dey and G. S. Agarwal, Phys. Rev. A 76, 015802 (2007).
[CrossRef]

J. Cheng and S. Han, Opt. Lett. 32, 1162 (2007).
[CrossRef]

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

2006 (1)

G. S. Agarwal and K. T. Kapale, J. Phys. B 39, 3437 (2006).
[CrossRef]

2004 (1)

G. Scarcelli, A. Valencia, and Y. H. Shih, Europhys. Lett. 68, 618 (2004).
[CrossRef]

1982 (1)

M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1982).
[CrossRef]

1879 (1)

L. Rayleigh, Philos. Mag. 8(49), 261 (1879).
[CrossRef]

Agarwal, G. S.

T. N. Dey and G. S. Agarwal, Opt. Lett. 34, 3199 (2009).
[CrossRef]

T. N. Dey and G. S. Agarwal, Phys. Rev. A 76, 015802 (2007).
[CrossRef]

G. S. Agarwal and K. T. Kapale, J. Phys. B 39, 3437 (2006).
[CrossRef]

Arnold, A. S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

Boyer, V.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

Cheng, J.

Cohen, B. E.

B. E. Cohen, Nature 467, 407 (2010).
[CrossRef]

Dey, T. N.

O. N. Verma, L. Zhang, J. Evers, and T. N. Dey, Phys. Rev. A 88, 013810 (2013).
[CrossRef]

T. N. Dey and J. Evers, Phys. Rev. A 84, 043842 (2011).
[CrossRef]

T. N. Dey and G. S. Agarwal, Opt. Lett. 34, 3199 (2009).
[CrossRef]

T. N. Dey and G. S. Agarwal, Phys. Rev. A 76, 015802 (2007).
[CrossRef]

Ding, D. S.

D. S. Ding, Z. Y. Zhou, and B. S. Shi, Opt. Lett. 39, 240 (2014).
[CrossRef]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
[CrossRef]

Druhl, K.

M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1982).
[CrossRef]

Evers, J.

O. N. Verma, L. Zhang, J. Evers, and T. N. Dey, Phys. Rev. A 88, 013810 (2013).
[CrossRef]

T. N. Dey and J. Evers, Phys. Rev. A 84, 043842 (2011).
[CrossRef]

M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef]

Franke-Arnold, S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

Gorshkov, A. V.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[CrossRef]

Greiner, M.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[CrossRef]

Guo, G. C.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
[CrossRef]

Han, S.

Hell, S. W.

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

Jiang, L.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[CrossRef]

Jones, K. M.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

Kapale, K. T.

G. S. Agarwal and K. T. Kapale, J. Phys. B 39, 3437 (2006).
[CrossRef]

Kiffner, M.

M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef]

Lantz, E.

E. Lantz, Nat. Photonics 2, 71 (2008).
[CrossRef]

Lee, S. K.

Lemons, K.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

Lett, P. D.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

Lukin, M. D.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[CrossRef]

Marino, A. M.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

Park, H. S.

Pooser, R. C.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

Rayleigh, L.

L. Rayleigh, Philos. Mag. 8(49), 261 (1879).
[CrossRef]

Scarcelli, G.

G. Scarcelli, A. Valencia, and Y. H. Shih, Europhys. Lett. 68, 618 (2004).
[CrossRef]

Scully, M. O.

M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1982).
[CrossRef]

Shi, B. S.

D. S. Ding, Z. Y. Zhou, and B. S. Shi, Opt. Lett. 39, 240 (2014).
[CrossRef]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
[CrossRef]

Shih, Y. H.

G. Scarcelli, A. Valencia, and Y. H. Shih, Europhys. Lett. 68, 618 (2004).
[CrossRef]

Valencia, A.

G. Scarcelli, A. Valencia, and Y. H. Shih, Europhys. Lett. 68, 618 (2004).
[CrossRef]

Verma, O. N.

O. N. Verma, L. Zhang, J. Evers, and T. N. Dey, Phys. Rev. A 88, 013810 (2013).
[CrossRef]

Walker, G.

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

Zhang, L.

O. N. Verma, L. Zhang, J. Evers, and T. N. Dey, Phys. Rev. A 88, 013810 (2013).
[CrossRef]

Zhou, Z. Y.

D. S. Ding, Z. Y. Zhou, and B. S. Shi, Opt. Lett. 39, 240 (2014).
[CrossRef]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
[CrossRef]

Zoller, P.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[CrossRef]

Zou, X. B.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
[CrossRef]

Zubairy, M. S.

M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef]

Europhys. Lett. (1)

G. Scarcelli, A. Valencia, and Y. H. Shih, Europhys. Lett. 68, 618 (2004).
[CrossRef]

J. Phys. B (1)

G. S. Agarwal and K. T. Kapale, J. Phys. B 39, 3437 (2006).
[CrossRef]

Nat. Photonics (1)

E. Lantz, Nat. Photonics 2, 71 (2008).
[CrossRef]

Nature (1)

B. E. Cohen, Nature 467, 407 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Philos. Mag. (1)

L. Rayleigh, Philos. Mag. 8(49), 261 (1879).
[CrossRef]

Phys. Rev. A (5)

O. N. Verma, L. Zhang, J. Evers, and T. N. Dey, Phys. Rev. A 88, 013810 (2013).
[CrossRef]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, Phys. Rev. A 85, 053815 (2012).
[CrossRef]

M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1982).
[CrossRef]

T. N. Dey and G. S. Agarwal, Phys. Rev. A 76, 015802 (2007).
[CrossRef]

T. N. Dey and J. Evers, Phys. Rev. A 84, 043842 (2011).
[CrossRef]

Phys. Rev. Lett. (4)

M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef]

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[CrossRef]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602 (2008).
[CrossRef]

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

Science (1)

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the image transfer based on EIT in atom vapor. (a) The energy-level scheme of the D1 line transition of Rb87. Ωc and Ωs was the Rabi frequency of coupling and signal beam, respectively. (b) The experimental setup. ISO, optical isolator; HWP, half-wave plate; PBS, polarization beam splitter; SMF, single mode fiber; SLM, spatial light modulator; L1 and L2, lens; QWP, quarter-wave plate; D, detector; CCD, charge coupled device.

Fig. 2.
Fig. 2.

Results of the image transfer experiment. (a) Image of coupling beam generated by the SLM, which loaded a LG01 phase holographic grating. (b) Signal beam before being expanded, and the expanded beam could be viewed as plane wave on CCD area. (c) Transmitted signal beam image, which had the same transverse intensity distribution with coupling beam image. (d) Interference pattern for plane wave with LG01 mode.

Fig. 3.
Fig. 3.

Normalized transverse intensity distribution of control and transmitted beam images. We selected the 1001100 pixels as the horizontal ordinate. As presented in dotted line boxes, we summed 20 pixel data at symmetrical direction around the selected radial line, then calculated the average value. The red line is the intensity distribution of control beam image; the blue line is the profile of transmitted signal image.

Fig. 4.
Fig. 4.

Propagation of doughnut-like images at different positions after the cell and mask in free space. (a)–(c) Profiles of the images at positions of 200, 500, and 1700 mm after the atom cell. (d)–(f) Profiles of the images at positions of 20, 500, and 1700 mm after the mask.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ωpz=ic2ω(2x2+2y2)g+2iπkχg,

Metrics