Abstract

Dual-drive Mach–Zehnder modulators were utilized to produce power-leveled optical frequency combs (OFCs) from a continuous-wave laser. The resulting OFCs contained up to 50 unique frequency components and spanned more than 200 GHz. Simple changes to the modulation frequency allowed for agile control of the comb spacing. These OFCs were then utilized for broadband, multiheterodyne measurements of CO2 using both a multipass cell and an optical cavity. This technique allows for robust measurements of trace gas species and alleviates much of the cost and complexity associated with the use of femtosecond OFCs produced with mode-locked pulsed lasers.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
    [CrossRef]
  2. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
    [CrossRef]
  3. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
    [CrossRef]
  4. F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [CrossRef]
  5. A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
    [CrossRef]
  6. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, Opt. Lett. 38, 2026 (2013).
    [CrossRef]
  7. T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
    [CrossRef]
  8. M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
    [CrossRef]
  9. V. Ataie, B. P. P. Kuo, E. Myslivets, and S. Radic, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), PDP5C.1.
  10. L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 2212 (2009).
    [CrossRef]
  11. S. Schiller, Opt. Lett. 27, 766 (2002).
    [CrossRef]
  12. D. W. Chandler and K. E. Strecker, J. Chem. Phys. 136, 154201 (2012).
    [CrossRef]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  14. D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
    [CrossRef]
  15. K. K. Lehmann, Cavity-Ringdown Spectroscopy (American Chemical Society, 1999), pp. 106–124.

2014 (1)

D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
[CrossRef]

2013 (1)

2012 (1)

D. W. Chandler and K. E. Strecker, J. Chem. Phys. 136, 154201 (2012).
[CrossRef]

2011 (1)

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

2009 (2)

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 2212 (2009).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

2007 (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

2006 (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef]

2004 (1)

2002 (1)

1994 (1)

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Adler, F.

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

Ataie, V.

V. Ataie, B. P. P. Kuo, E. Myslivets, and S. Radic, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), PDP5C.1.

Ban, T.

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

Baumann, E.

Bergmann, K.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 2212 (2009).
[CrossRef]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Chandler, D. W.

D. W. Chandler and K. E. Strecker, J. Chem. Phys. 136, 154201 (2012).
[CrossRef]

Coddington, I.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Enami, T.

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

Foltynowicz, A.

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Giorgetta, F. R.

Gohle, C.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Hodges, J. T.

D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
[CrossRef]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

Keilmann, F.

Knabe, K.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Kourogi, M.

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kuo, B. P. P.

V. Ataie, B. P. P. Kuo, E. Myslivets, and S. Radic, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), PDP5C.1.

Lehmann, K. K.

K. K. Lehmann, Cavity-Ringdown Spectroscopy (American Chemical Society, 1999), pp. 106–124.

Long, D. A.

D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
[CrossRef]

Maslowski, P.

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Myslivets, E.

V. Ataie, B. P. P. Kuo, E. Myslivets, and S. Radic, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), PDP5C.1.

Newbury, N. R.

Ohtsu, M.

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Plusquellic, D. F.

D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
[CrossRef]

Radic, S.

V. Ataie, B. P. P. Kuo, E. Myslivets, and S. Radic, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), PDP5C.1.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

Schiller, S.

Shore, B. W.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 2212 (2009).
[CrossRef]

Sinclair, L. C.

Strecker, K. E.

D. W. Chandler and K. E. Strecker, J. Chem. Phys. 136, 154201 (2012).
[CrossRef]

Swann, W. C.

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef]

Truong, G.-W.

D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
[CrossRef]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Van Zee, R. D.

D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Yatsenko, L. P.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 2212 (2009).
[CrossRef]

Ye, J.

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef]

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

D. A. Long, G.-W. Truong, R. D. Van Zee, D. F. Plusquellic, and J. T. Hodges, Appl. Phys. B 114, 489 (2014)..
[CrossRef]

Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[CrossRef]

J. Chem. Phys. (1)

D. W. Chandler and K. E. Strecker, J. Chem. Phys. 136, 154201 (2012).
[CrossRef]

Nat. Photonics (1)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Nat. Photonics 4, 55 (2009).
[CrossRef]

Opt. Commun. (1)

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 2212 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Science (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef]

Other (2)

V. Ataie, B. P. P. Kuo, E. Myslivets, and S. Radic, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), PDP5C.1.

K. K. Lehmann, Cavity-Ringdown Spectroscopy (American Chemical Society, 1999), pp. 106–124.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the multiheterodyne spectrometer. FS and FC denote fiber splitters and fiber combiners, respectively. (b) Schematic of the drive signals applied to each dual-drive MZM. An RF signal generated by a fast-switching microwave source is split and amplified into the two drive legs. Microwave powers as high as 2 W were utilized to generate wide OFCs. Attenuation of one of the drives (6 dB) as well as the applied DC bias allowed for power-leveling of the resulting comb. (c) Illustration of the multiheterodyne method. The LO shifts the probe OFC into the RF domain where it can be readily digitized, thus allowing for high-speed multiplexing. Note that f0 is the optical carrier frequency, n is an integer, fAOM is the frequency of the AOM, fmod is the LO MZM drive frequency, and δf,mod is the frequency difference between the LO and probe MZMs.

Fig. 2.
Fig. 2.

Optical spectra recorded with an optical spectrum analyzer having a resolution of 4 GHz. The characteristic shape is a product of the spectrum analyzer. Through the use of dual-drive MSMs we have produced power-leveled OFCs with spacings from near DC to 18 GHz. OFCs have been produced with more than 50 individual frequency components.

Fig. 3.
Fig. 3.

(Lower panel) Amplitude of the observed multiheterodyne signal resulting from the interference of the OFCs. This signal is the average of 10,000 individual measurements, which were recorded on a 14-bit spectrum analyzer with a bandwidth of 1 kHz in a total time of 30 s. The total optical power on the photodiode was 11.6 μW. Note that due to the common-mode nature of this multiheterodyne signal, the widths of the individual features are resolution limited even at a bandwidth of 1 Hz. The ratio of each probe frequency component and its corresponding reference frequency component yields the local, complex, normalized transmission signal. (Upper panel) Baseline-corrected transmission amplitude (red circles) and phase (blue diamonds) spectra. The two solid lines correspond to a simultaneous fit to the measured amplitude and phase spectra, treating the gas pressure, carrier detuning from line center, and baseline amplitude and phase as adjustable parameters. The absorption feature is the (30013)(00001) R16e CO2 transition recorded at a pressure of 14 Pa.

Metrics