Abstract

Mode instabilities (MIs) have quickly become the most limiting effect for the average power scaling of nearly diffraction-limited beams from state-of-the-art fiber laser systems. In this work it is shown that, by using an advanced multicore photonic crystal fiber design, the threshold power of MIs can be increased linearly with the number of cores. An average output power of 536 W, corresponding to 4 times the threshold power of a single core, is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 94 (2010).
    [CrossRef]
  2. IPG Photonics, www.ipgphotonics.com .
  3. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 20, 3997 (2012).
    [CrossRef]
  4. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Express 19, 13218 (2011).
    [CrossRef]
  5. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 4572 (2011).
    [CrossRef]
  6. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
  7. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, Opt. Express 20, 5742 (2012).
    [CrossRef]
  8. S. Naderi, I. Dajani, T. Madden, and C. Robin, Opt. Express 21, 16111 (2013).
    [CrossRef]
  9. C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 21, 19375 (2013).
    [CrossRef]
  10. H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 21, 17285 (2013).
    [CrossRef]
  11. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 2283 (2013).
    [CrossRef]
  12. L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
    [CrossRef]
  13. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 20, 15710 (2012).
    [CrossRef]
  14. H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. ATu3A.
  15. J. M. Fini, Opt. Express 19, 4042 (2011).
    [CrossRef]
  16. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, Opt. Express 13, 4180 (2005).
    [CrossRef]

2013 (4)

2012 (4)

2011 (3)

2010 (1)

2009 (1)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[CrossRef]

2005 (1)

Alkeskjold, T. T.

Andersen, T. V.

Bennett, C. R.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[CrossRef]

Breitkopf, S.

Broeng, J.

Castro, J. M.

Dajani, I.

Eidam, T.

Fini, J. M.

Gabler, T.

Gaida, C.

Geraghty, D. F.

Gottschall, T.

Greiner, C. M.

Hädrich, S.

Hanf, S.

Hansen, K. R.

Honkanen, S.

Iazikov, D.

Jansen, F.

Jauregui, C.

Jørgensen, M. M.

Kienel, M.

Klenke, A.

Lægsgaard, J.

Laurila, M.

Liem, A.

Limpert, J.

Madden, T.

Michaille, L.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[CrossRef]

Mossberg, T. W.

Naderi, S.

Otto, H.-J.

Robin, C.

Rothhardt, J.

Schmidt, O.

Schreiber, T.

Seise, E.

Shepherd, T. J.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[CrossRef]

Stutzki, F.

Taylor, D. M.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[CrossRef]

Tünnermann, A.

Wirth, C.

IEEE J. Sel. Top. Quantum Electron. (1)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
[CrossRef]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).

Opt. Express (9)

Opt. Lett. (3)

Other (2)

IPG Photonics, www.ipgphotonics.com .

H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. ATu3A.

Supplementary Material (1)

» Media 1: MP4 (856 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SEM image of the MCF (the four Yb3+ doped cores are highlighted in green).

Fig. 2.
Fig. 2.

Sketch of the experimental setup. M1–M5 are dielectric mirrors; M2 has 60% reflectivity. D1 is a dichroic dielectric mirror to separate the signal and pump beams; L1 and L2 are focusing lenses used to couple the seed signal in the fiber and to collimate the amplified signal, respectively.

Fig. 3.
Fig. 3.

Stability evolution of the laser system when exciting each individual core of the MCF one at a time (orange color-shaded points) and when all cores are simultaneously excited (green). The corresponding average MI thresholds are 147 W for the individual cores and 536 W when simultaneously exciting all the cores.

Fig. 4.
Fig. 4.

Excerpt from Media 1 showing the intensity distributions of the four cores slightly below the threshold.

Fig. 5.
Fig. 5.

Thermal cross talk between core 1 and core 2 is simulated as a function of their separation Δs. (a) Simulation scheme for different orientations (even/odd) of the LP11 in core 1. (b) The thermally induced change of the refractive index in core 1 and core 2 due to the longitudinal modal beating in core 1 is investigated within half a beating period [refractive index change=n(x,y,position1)n(x,y,position2)].

Fig. 6.
Fig. 6.

Evolution of the thermally induced index of core 1 and 2 generated by modal beating in core 1. The graphs are normalized to maximum. Solid and dashed lines represent the change within half a beating period.

Fig. 7.
Fig. 7.

Normalized coupling constant κ as a function of the core separation Δs for the LP11e and LP11o excitation in core 1.

Metrics