Abstract

A method to improve the linearity of the down-converted analog photonic link is proposed and experimentally demonstrated, consisting of two phase modulators, a polarizer, and an optical filter. Down-conversion of a 10-GHz microwave signal to 100-MHz intermediate frequency is successfully achieved. By carefully optimizing the angles between the transverse-electric and transverse-magnetic modes, the third-order inter-modulation distortion (IMD3) is suppressed. The linearization method leads to a suppression of the IMD3 by more than 14 and 13 dB improvement of spurious-free dynamic range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
    [CrossRef]
  4. A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
    [CrossRef]
  5. G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
    [CrossRef]
  6. T. S. Cho and K. Kim, J. Lightwave Technol. 24, 2052 (2006).
    [CrossRef]
  7. B. M. Hass and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
    [CrossRef]
  8. T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
    [CrossRef]
  9. Z. Y. Chen, L. S. Yan, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, H. Y. Jiang, and T. Zhou, Opt. Express 21, 20999 (2013).
    [CrossRef]
  10. P. Li, L. S. Yan, T. Zhou, W. L. Li, Z. Y. Chen, W. Pan, and B. Luo, Opt. Lett. 38, 2391 (2013).
    [CrossRef]
  11. V. R. Pagan, B. M. Hass, and T. E. Murphy, Opt. Express 19, 883 (2011).
    [CrossRef]
  12. B. M. Hass and T. E. Murphy, IEEE Photon. J. 3, 1(2011).
    [CrossRef]

2013 (2)

2011 (3)

V. R. Pagan, B. M. Hass, and T. E. Murphy, Opt. Express 19, 883 (2011).
[CrossRef]

B. M. Hass and T. E. Murphy, IEEE Photon. J. 3, 1(2011).
[CrossRef]

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

2010 (1)

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

2009 (1)

2007 (2)

B. M. Hass and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

2006 (2)

1994 (1)

G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
[CrossRef]

Agarwal, A.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Banwell, T.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Betts, G. E.

G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
[CrossRef]

Chen, Z. Y.

Cho, T. S.

Clark, T. R.

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

Dennis, M. L.

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

Guo, Y. H.

Hass, B. M.

V. R. Pagan, B. M. Hass, and T. E. Murphy, Opt. Express 19, 883 (2011).
[CrossRef]

B. M. Hass and T. E. Murphy, IEEE Photon. J. 3, 1(2011).
[CrossRef]

B. M. Hass and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

Jiang, H. Y.

Kim, K.

Li, P.

Li, S. Y.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Li, W. L.

Luo, B.

Murphy, T. E.

V. R. Pagan, B. M. Hass, and T. E. Murphy, Opt. Express 19, 883 (2011).
[CrossRef]

B. M. Hass and T. E. Murphy, IEEE Photon. J. 3, 1(2011).
[CrossRef]

B. M. Hass and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

Pagan, V. R.

Pan, W.

Seeds, A. J.

Toliver, P.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Williams, K. J.

Woodward, T. K.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Yan, L. S.

Yao, J. P.

Zhang, H. Y.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Zheng, X. P.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Zhou, B. K.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Zhou, T.

Zou, X. H.

IEEE Photon. J. (1)

B. M. Hass and T. E. Murphy, IEEE Photon. J. 3, 1(2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

B. M. Hass and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed down-converted APL. Optical spectrum (b) after PM1, (c) after PM2, (d) after the optical filter, and (e) electrical spectrum detected by the PD. PM, phase modulator; PD, photodetector; LO, local oscillator.

Fig. 2.
Fig. 2.

Experimental setup for the proposed down-converted APL: LD, laser diode; PC, polarization controller; EDFA, erbium-doped fiber amplifier; ESA, electrical spectrum analyzer.

Fig. 3.
Fig. 3.

Measured electrical spectrum of the down-converted tones for (a) TM link and (b) proposed link.

Fig. 4.
Fig. 4.

Measured SFDR of the down-converted APL for the TM case and linearized case.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Vin(t)=V1sinω1t+V2sinω2t,
E(t)=x^cosθexpj[ωct+γm1sin(ω1t)+γm2sin(ω2t)]+z^sinθexpj[ωct+m1sin(ω1t)+m2sin(ω2t)],
mi=πViVπ(i=1,2),
E(t)=cosθcosαexpj[ωct+γm1sin(ω1t)+γm2sin(ω2t)]+sinθsinαexpj[ωct+m1sin(ω1t)+m2sin(ω2t)].
E(t)=[cosθcosαexp(jγm1sin(ω1t)+jγm2sin(ω2t))+sinθsinaexp(jm1sin(ω1t)+jm2sin(ω2t))]expj(ωct+m0sinω0t),
E(t)=expj(ωct)[cosθcosαn,p,lJn(γm1)Jp(γm2)Jl(m0)expj(nω1+pω2+lω0)t+sinθsinan,p,lJn(m1)Jp(m2)Jl(m0)expj(nω1+pω2+lω0)t].
E(t)=expj(ωc+ω0)tn,p[cosθcosαJn(γm1)×Jp(γm2)J1np(m0)+sinθsinaJn(m1)×Jp(m2)J1np(m0)]expj(nω10+pω20)t,
ω10=ω1ω0,ω20=ω2ω0.
i(t)=Rn,p,r,s[cos2θcos2αJn(γm1)Jp(γm2)J1np(m0)×Jr(γm1)Js(γm2)J1rs(m0)+sin2θsina2Jn(m1)Jp(m2)J1np(m0)×Jr(m1)Js(m2)J1rs(m0)+cosθcosαsinθsinaJn(γm1)Jp(γm2)×J1np(m0)Jr(m1)Js(m2)J1rs(m0)+cosθcosαsinθsinaJn(m1)Jp(m2)×J1np(m0)Jr(γm1)Js(γm2)J1rs(m0)]×expj[(nr)ω10t+(ps)ω20t].
ii0+i1(sinω10t+sinω20t)+i3th(sin(2ω10ω20)t+sin(2ω20ω10)t),
i1=J1(m0)J0(m0)m1×[γcos2θcos2a+sin2θsin2a+cosθcosαsinθsinα(γ+1)].
i3th=J1(m0)J0(m0)m12m2×[18γ3cos2θcos2α+18sin2θsin2α+(18γ2+18γ)×cosθcosαsinθsinα].
tanθtanα=0.111ortanθtanα=0.3333.

Metrics