Abstract

We present a novel self-powered chip to detect the direction of incident light. This chip directly provides digitized output without the need of any off-chip power supply or optical or mechanical components. The chip was implemented in a standard 0.5 μm CMOS process. A microscale metal baffle was created by stacking all metal layers, contacts, and vias available in the process to produce on-chip shadowing. N-well/p+ photodiode arrays are located on both sides of the baffle to sense light. The photocurrent generated by a photodiode depends on the size of the photodiode and the shadowing. The shadowed area depends on the incident angle of the light. A current mirror circuit is used to compare the currents generated by the photodiodes on the opposite sides of the baffle and, consequently, provide a digital signal to indicate the incident light angle. Compared with the ideal linear digital light-angle detector with the same resolution, the presented sensor achieved the maximum error of only 2 deg over 110 deg test range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription