Abstract

A compact Raman LIDAR system with a spectrograph was used for express ice thickness measurements. The difference between the Raman spectra of ice and liquid water is employed to locate the ice–water interface while elastic scattering was used for air–-ice surface detection. This approach yields an error of only 2 mm for an 80 mm thick ice sample, indicating that it is a promising express noncontact thickness measurements technique in field experiments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009), Chap. 3.2, p. 49.
  2. M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).
  3. L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
    [CrossRef]
  4. R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley, 1985).
  5. A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean. Methods and Applications (Wiley, 2001), p 256.
  6. O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).
  7. K.-J. Lee, Y. Park, A. Bunkin, R. Nunes, S. Pershin, and K. Voliak, Appl. Opt. 41, 401 (2002).
    [CrossRef]
  8. A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, Appl. Opt. 51, 5477 (2012).
    [CrossRef]
  9. W. A. England, S. N. Jenny, and D. A. Greenhalgh, J. Raman Spectrosc. 15, 156 (1984).
    [CrossRef]
  10. K. F. McCarty, Appl. Opt. 26, 4482 (1987).
    [CrossRef]
  11. A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, Vib. Spectrosc. 61, 1 (2012).
  12. V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).
  13. S. M. Pershin and A. F. Bunkin, Opt. Spectrosc. 85, 190 (1998).
  14. A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, Appl. Opt. 50, A86 (2011).
    [CrossRef]
  15. S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).
  16. R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).
  17. A. F. Bunkin and S. M. Pershin, Phys. Wave Phenom. 18, 237 (2010).
  18. F. Rulla, A. Vegas, A. Sansano, and P. Sobron, Spectrochim. Acta, Part A 80, 148 (2011).
    [CrossRef]
  19. S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, Quantum Electron. 40, 1146 (2010).
    [CrossRef]
  20. M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).
  21. B. Lienert, J. Porter, and S. K. Sharma, Appl. Opt. 48, 4762 (2009).
    [CrossRef]

2013 (1)

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

2012 (3)

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
[CrossRef]

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, Vib. Spectrosc. 61, 1 (2012).

A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, Appl. Opt. 51, 5477 (2012).
[CrossRef]

2011 (2)

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, Appl. Opt. 50, A86 (2011).
[CrossRef]

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, Spectrochim. Acta, Part A 80, 148 (2011).
[CrossRef]

2010 (3)

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, Quantum Electron. 40, 1146 (2010).
[CrossRef]

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).

A. F. Bunkin and S. M. Pershin, Phys. Wave Phenom. 18, 237 (2010).

2009 (2)

B. Lienert, J. Porter, and S. K. Sharma, Appl. Opt. 48, 4762 (2009).
[CrossRef]

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).

2003 (1)

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

2002 (1)

1999 (1)

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).

1998 (1)

S. M. Pershin and A. F. Bunkin, Opt. Spectrosc. 85, 190 (1998).

1987 (1)

1984 (1)

W. A. England, S. N. Jenny, and D. A. Greenhalgh, J. Raman Spectrosc. 15, 156 (1984).
[CrossRef]

Ahteeb, V.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, Vib. Spectrosc. 61, 1 (2012).

Alhimenko, A. I.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).

Artamonov, E.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Barbini, R.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Becucci, M.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).

Bunkin, A.

Bunkin, A. F.

A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, Appl. Opt. 51, 5477 (2012).
[CrossRef]

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, Appl. Opt. 50, A86 (2011).
[CrossRef]

A. F. Bunkin and S. M. Pershin, Phys. Wave Phenom. 18, 237 (2010).

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, Quantum Electron. 40, 1146 (2010).
[CrossRef]

S. M. Pershin and A. F. Bunkin, Opt. Spectrosc. 85, 190 (1998).

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean. Methods and Applications (Wiley, 2001), p 256.

Burikov, S.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).

Cavalieri, S.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).

Cheong, H. D.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).

Choi, W. S.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).

Colao, F.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Druckenmiller, M.

C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009), Chap. 3.2, p. 49.

Drusch, M.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
[CrossRef]

England, W. A.

W. A. England, S. N. Jenny, and D. A. Greenhalgh, J. Raman Spectrosc. 15, 156 (1984).
[CrossRef]

Eramo, R.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).

Fadeev, V.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).

Fantoni, R.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Fini, L.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).

Fiorani, L.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Galli, M.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Greenhalgh, D. A.

W. A. England, S. N. Jenny, and D. A. Greenhalgh, J. Raman Spectrosc. 15, 156 (1984).
[CrossRef]

Gudmestad, O. T.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).

Haas, C.

C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009), Chap. 3.2, p. 49.

Heygster, G.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

Huntemann, M.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

Jääskeläinena, A. S.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, Vib. Spectrosc. 61, 1 (2012).

Jenny, S. N.

W. A. England, S. N. Jenny, and D. A. Greenhalgh, J. Raman Spectrosc. 15, 156 (1984).
[CrossRef]

Jensen, A.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).

Kaleschke, L.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
[CrossRef]

Kim, D.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).

Kim, Y. G.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).

Kivioja, A. O.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, Vib. Spectrosc. 61, 1 (2012).

Klinkov, V. K.

Krumpen, T.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

Lapshin, V.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).

Lednev, V. N.

Lee, J. I.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).

Lee, K.-J.

Lienert, B.

Løset, S.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).

Luk’yanchenko, V. A.

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, Quantum Electron. 40, 1146 (2010).
[CrossRef]

Lukyanchenko, V. A.

Lushnikov, D. L.

Maaß, N.

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
[CrossRef]

Mäkynen, M.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
[CrossRef]

Marchenko, A. V.

Materazzi, M.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).

McCarty, K. F.

Measures, R. M.

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley, 1985).

Morozov, E. G.

Nunes, R.

Palucci, A.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Park, S. H.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, Appl. Opt. 14, 209 (2010).

Park, Y.

Pershin, S.

Pershin, S. M.

A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, Appl. Opt. 51, 5477 (2012).
[CrossRef]

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, Appl. Opt. 50, A86 (2011).
[CrossRef]

A. F. Bunkin and S. M. Pershin, Phys. Wave Phenom. 18, 237 (2010).

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, Quantum Electron. 40, 1146 (2010).
[CrossRef]

S. M. Pershin and A. F. Bunkin, Opt. Spectrosc. 85, 190 (1998).

Porter, J.

Rulla, F.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, Spectrochim. Acta, Part A 80, 148 (2011).
[CrossRef]

Sansano, A.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, Spectrochim. Acta, Part A 80, 148 (2011).
[CrossRef]

Sharma, S. K.

Shkhinek, K. N.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).

Sobron, P.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, Spectrochim. Acta, Part A 80, 148 (2011).
[CrossRef]

Syroeshkin, A.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).

Tian-Kunze, X.

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
[CrossRef]

Tørum, A.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).

Vegas, A.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, Spectrochim. Acta, Part A 80, 148 (2011).
[CrossRef]

Voliak, K.

Voliak, K. I.

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean. Methods and Applications (Wiley, 2001), p 256.

Volkov, P.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).

Vuorinen, T.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, Vib. Spectrosc. 61, 1 (2012).

Yulmetov, R. N.

Antarc. Sci. (1)

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, Antarc. Sci. 15, 77 (2003).

Appl. Opt. (6)

Cryosphere Discussion (1)

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, Cryosphere Discussion 7, 4379 (2013).

Geophys. Res. Lett. (1)

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, Geophys. Res. Lett. 39, L05501 (2012).
[CrossRef]

J. Raman Spectrosc. (1)

W. A. England, S. N. Jenny, and D. A. Greenhalgh, J. Raman Spectrosc. 15, 156 (1984).
[CrossRef]

Laser Phys. (1)

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, Laser Phys. 9, 422 (1999).

Oceanology (1)

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, Oceanology 49, 205 (2009).

Opt. Spectrosc. (1)

S. M. Pershin and A. F. Bunkin, Opt. Spectrosc. 85, 190 (1998).

Phys. Wave Phenom. (1)

A. F. Bunkin and S. M. Pershin, Phys. Wave Phenom. 18, 237 (2010).

Quantum Electron. (1)

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, Quantum Electron. 40, 1146 (2010).
[CrossRef]

Spectrochim. Acta, Part A (1)

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, Spectrochim. Acta, Part A 80, 148 (2011).
[CrossRef]

Vib. Spectrosc. (1)

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, Vib. Spectrosc. 61, 1 (2012).

Other (4)

C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009), Chap. 3.2, p. 49.

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley, 1985).

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean. Methods and Applications (Wiley, 2001), p 256.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, in Student’s Book for Institutes of Higher Education, St. Petersburg (Publisher LAN, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experiment setup for ice thickness measurements using the Raman OH-band profile. (The movable lens is used to adjust the laser beam waist position in the ice–liquid water sample).

Fig. 2.
Fig. 2.

ICCD registered spectra: cyan, laser beam waist adjusted to the ice sample center; blue, laser beam waist adjusted 30 mm below the ice-liquid water interface. The strong elastic signal is used for air-ice interface identification. The inset plot gives detailed Raman water spectra in the OH stretching range. The fitted Raman spectra centers have a difference ( 3206 cm 1 for ice and 3271 cm 1 for liquid water), which can be used to determine the ice–liquid water interface.

Fig. 3.
Fig. 3.

Ice thickness measurements using elastic and Raman scattering: (a) ice thickness measurement using elastic signal (black squares) and (b) ice thickness measurements using Raman OH-band center (blue circles). The lens was shifted to the floating ice sample (x axis—gray color) and the spectrum was detected at every position. The beam waist position change due to refractive index and optical path in the ice sample was corrected (x axis—black color) in order to determine ice sample thickness. The elastic signal was determined as integral to the corresponding band with linear background correction. The OH-band profile was fitted with Gaussian function and the curve centers as a function of lens-to-sample distance were plotted in (b).

Metrics