Abstract

A self-focusing method applicable to digital lensless holographic microscopy is presented. The method searches for the global minimum of the area enclosing a given amount of energy in a region surrounding the object of interest. The proposed modified enclosed energy method has been tested on self-focusing experimental holograms of a paramecium specimen and a section of the head of a drosophila melanogaster fly. The presented self-focusing technique also has been contrasted with some of the already reported methods to seek the best focus image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. A. Groen, I. T. Young, and G. Ligthart, Cytometry 6, 81 (1985).
    [CrossRef]
  2. T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, Image Vis. Comput. 11, 629 (1993).
  3. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, Opt. Express 14, 5895 (2006).
    [CrossRef]
  4. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, Appl. Opt. 47, D176 (2008).
    [CrossRef]
  5. P. Langehanenberg, G. Bally, and B. Kemper, 3D Res. 2, 1 (2011).
    [CrossRef]
  6. P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, Opt. Lett. 36, 1945 (2011).
    [CrossRef]
  7. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, Opt. Lett. 28, 1257 (2003).
    [CrossRef]
  8. J. C. Filipinas and P. F. Almoro, Opt. Lett. 36, 3798 (2011).
    [CrossRef]
  9. J. F. Restrepo and J. Garcia-Sucerquia, Opt. Lett. 37, 752 (2012).
    [CrossRef]
  10. D. Gabor, Nature 161, 777 (1948).
    [CrossRef]
  11. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
    [CrossRef]
  12. J. Garcia-Sucerquia, Appl. Opt. 52, A232 (2013).
    [CrossRef]
  13. M. H. Jericho and H. J. Kreuzer, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.
  14. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).
  15. M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, Biomed. Opt. Express 3, 313 (2012).
    [CrossRef]

2013 (1)

2012 (2)

2011 (3)

2008 (1)

2006 (2)

2003 (1)

1993 (1)

T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, Image Vis. Comput. 11, 629 (1993).

1985 (1)

F. C. A. Groen, I. T. Young, and G. Ligthart, Cytometry 6, 81 (1985).
[CrossRef]

1948 (1)

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Almoro, P. F.

Bally, G.

P. Langehanenberg, G. Bally, and B. Kemper, 3D Res. 2, 1 (2011).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Callens, N.

Coppola, G.

De Nicola, S.

Depeursinge, C.

Dirksen, D.

Distante, C.

Dubois, F.

Egli, M.

Ferraro, P.

Filipinas, J. C.

Finizio, A.

Franco-Obregón, A.

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Garcia-Sucerquia, J.

Groen, F. C. A.

F. C. A. Groen, I. T. Young, and G. Ligthart, Cytometry 6, 81 (1985).
[CrossRef]

Javidi, B.

Jayasooriah,

T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, Image Vis. Comput. 11, 629 (1993).

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
[CrossRef]

M. H. Jericho and H. J. Kreuzer, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.

Jericho, S. K.

Kemper, B.

Klages, P.

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
[CrossRef]

M. H. Jericho and H. J. Kreuzer, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.

Kühn, J.

Langehanenberg, P.

Ligthart, G.

F. C. A. Groen, I. T. Young, and G. Ligthart, Cytometry 6, 81 (1985).
[CrossRef]

Memmolo, P.

Ong, S. H.

T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, Image Vis. Comput. 11, 629 (1993).

Paturzo, M.

Pierattini, G.

Restrepo, J. F.

Richard, S.

Schockaert, C.

Sinniah, R.

T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, Image Vis. Comput. 11, 629 (1993).

Toy, M. F.

von Bally, G.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Xu, W.

Yeo, T. T. E.

T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, Image Vis. Comput. 11, 629 (1993).

Young, I. T.

F. C. A. Groen, I. T. Young, and G. Ligthart, Cytometry 6, 81 (1985).
[CrossRef]

Yourassowsky, C.

3D Res. (1)

P. Langehanenberg, G. Bally, and B. Kemper, 3D Res. 2, 1 (2011).
[CrossRef]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Cytometry (1)

F. C. A. Groen, I. T. Young, and G. Ligthart, Cytometry 6, 81 (1985).
[CrossRef]

Image Vis. Comput. (1)

T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, Image Vis. Comput. 11, 629 (1993).

Nature (1)

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (2)

M. H. Jericho and H. J. Kreuzer, in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic representation of a DLHM setup.

Fig. 2.
Fig. 2.

Example of the algorithm operation for the modified enclosed energy. See text for further details.

Fig. 3.
Fig. 3.

Performance of the modified enclosed energy compared with other self-focusing criteria. (a) Normalized metrics versus reconstruction distance for a DLHM hologram of a section of the head of a fruit fly. (b) and (c) Illustrated reconstructed image for the focal plane found according to the modified enclosed energy/Tamura’s metric.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(r)=|Uscat(r)|2+|Uref(r)|2+[Uscat(r)Uref*(r)+Uscat*(r)Uref(r)].
Uscat(sΔx,tΔy,Zr)=ΔxΔy×exp[ik(s2ΔxΔx+t2ΔyΔy)/2L]×m=M/2(M/2)1n=M/2(M/2)1I˜(mΔx,nΔy)×exp[ik(m2ΔxΔx+n2ΔyΔy)/2L]×exp[ik((sm)2ΔxΔx+(tn)2ΔyΔy)/2L].
|Uscat(sΔx,tΔy,Zrf)|2=Zri2Zrf2|Uscat(sΔx,tΔy,Zri)|2.
Iri=s=1Nt=1N|Uscat(sΔx,tΔy,Zri)|2.
IriZri2Zrn2=s=1Pnt=1Pn|Uscat(sΔx,tΔy,Zrn)|2.
(WZZWZ0Z0)ΔL,

Metrics