Abstract

A method is presented to dynamically improve the beam quality in laser amplifiers by spherical aberration compensation. By imaging the field with a negative spherical aberration into a laser amplifier, the wavefront aberration of an input beam could be compensated by that of the gain medium in the amplifier with positive spherical aberration. Both power amplification and beam quality improvement can be achieved simultaneously. No additional optical components are introduced. Experiments are conducted for a beam from an oscillator with 28 W output power. The M2 factor of the beam was improved from 4.2 to 1.6 after amplification. The power was also amplified to 54.7 W. It is a cost-effective and passive way for wavefront compensation, as compared to deformable mirrors and phase corrector plates.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yang, Y. Ning, X. Lei, B. Xu, X. Y. Li, L. Z. Dong, H. Yan, W. J. Liu, W. H. Jiang, L. Liu, C. Wang, X. B. Liang, and X. J. Tang, Opt. Express 18, 7121 (2010).
    [CrossRef]
  2. X. Lei, S. Wang, H. Yan, W. J. Liu, L. Z. Dong, P. Yang, and B. Xu, Opt. Express 20, 22143 (2012).
    [CrossRef]
  3. M. L. Gong, Y. T. Qiu, L. Huang, Q. Liu, P. Yan, and H. T. Zhang, Opt. Lett. 38, 1101 (2013).
    [CrossRef]
  4. Y. Lumer, I. Moshe, S. Jackel, and A. Meir, J. Opt. Soc. Am. B 27, 1337 (2010).
    [CrossRef]
  5. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, Opt. Lett. 32, 47 (2007).
    [CrossRef]
  6. Z. Xiang, D. Wang, S. Q. Pan, Y. T. Dong, Z. G. Zhao, T. Li, J. H. Ge, C. Liu, and J. Chen, Opt. Express 19, 21060 (2011).
    [CrossRef]
  7. X. P. Yan, Q. Liu, X. Fu, D. S. Wang, and M. L. Gong, J. Opt. Soc. Am. B 27, 1286 (2010).
    [CrossRef]
  8. A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, Opt. Commun. 259, 223 (2006).
    [CrossRef]
  9. I. Buske and U. Wittrock, Appl. Phys. B 83, 229 (2006).
    [CrossRef]
  10. B. J. Neubert and B. Eppich, Opt. Commun. 250, 241 (2005).
    [CrossRef]
  11. Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
    [CrossRef]
  12. I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

2014 (1)

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

2013 (1)

2012 (1)

2011 (1)

2010 (3)

2007 (1)

2006 (2)

A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, Opt. Commun. 259, 223 (2006).
[CrossRef]

I. Buske and U. Wittrock, Appl. Phys. B 83, 229 (2006).
[CrossRef]

2005 (1)

B. J. Neubert and B. Eppich, Opt. Commun. 250, 241 (2005).
[CrossRef]

2001 (1)

I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

Bonnefois, A. M.

A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, Opt. Commun. 259, 223 (2006).
[CrossRef]

Buske, I.

I. Buske and U. Wittrock, Appl. Phys. B 83, 229 (2006).
[CrossRef]

Chen, J.

Dong, L. Z.

Dong, Y. T.

Eppich, B.

B. J. Neubert and B. Eppich, Opt. Commun. 250, 241 (2005).
[CrossRef]

Fallnich, C.

I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

Fu, X.

Ge, J.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Ge, J. H.

Gilbert, M.

A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, Opt. Commun. 259, 223 (2006).
[CrossRef]

Gong, M. L.

Huang, L.

Jackel, S.

Jiang, W. H.

Lei, X.

Leibush, E.

Li, T.

Li, X. Y.

Liang, X. B.

Liu, C.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Z. Xiang, D. Wang, S. Q. Pan, Y. T. Dong, Z. G. Zhao, T. Li, J. H. Ge, C. Liu, and J. Chen, Opt. Express 19, 21060 (2011).
[CrossRef]

Liu, L.

Liu, Q.

Liu, W. J.

Lumer, Y.

Meir, A.

Moshe, I.

Neubert, B. J.

B. J. Neubert and B. Eppich, Opt. Commun. 250, 241 (2005).
[CrossRef]

Ning, Y.

Pan, S.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Pan, S. Q.

Qi, Y.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Qiu, Y. T.

Revermainn, M.

I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

Struve, B.

I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

Tang, X. J.

Thro, P. Y.

A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, Opt. Commun. 259, 223 (2006).
[CrossRef]

Wang, C.

Wang, D.

Wang, D. S.

Wang, S.

Welling, H.

I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

Weulersse, J. M.

A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, Opt. Commun. 259, 223 (2006).
[CrossRef]

Wittrock, U.

I. Buske and U. Wittrock, Appl. Phys. B 83, 229 (2006).
[CrossRef]

Xiang, Z.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Z. Xiang, D. Wang, S. Q. Pan, Y. T. Dong, Z. G. Zhao, T. Li, J. H. Ge, C. Liu, and J. Chen, Opt. Express 19, 21060 (2011).
[CrossRef]

Xu, B.

Yan, H.

Yan, P.

Yan, X. P.

Yang, P.

Ye, Z.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Zawischa, I.

I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

Zhang, H. T.

Zhang, X.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Zhao, Z.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

Zhao, Z. G.

Appl. Phys. B (1)

I. Buske and U. Wittrock, Appl. Phys. B 83, 229 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, IEEE J. Quantum Electron. 50, 62 (2014).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, Opt. Commun. 259, 223 (2006).
[CrossRef]

B. J. Neubert and B. Eppich, Opt. Commun. 250, 241 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

OSA Trends Opt. Photonics (1)

I. Zawischa, C. Fallnich, H. Welling, M. Revermainn, and B. Struve, OSA Trends Opt. Photonics 50, 586 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of an asymmetrical DSR. A1, A2, B1 and B2 denote the four fields in the rod end surfaces. The values of c13 show the measured spherical-aberration-coefficient of the fields in the corresponding planes.

Fig. 2.
Fig. 2.

Wavefront measurement results of the intra-cavity field in plane A1. The wavefront is decomposed in terms of Zernike functions. Lower-order aberrations such as piston, tilt and defocus are removed.

Fig. 3.
Fig. 3.

Schematics of the MOPA setups. (a) Input beam of the amplifier has a negative spherical aberration by imaging field EA1 to the amplifier. (b) Input beam of the amplifier has a positive spherical aberration by imaging field EA2 to the amplifier.

Fig. 4.
Fig. 4.

(a) Variation of M2 factor and spherical-aberration coefficient c13 of the output beam with the increasing pump power of the amplifier. (b) output power from the amplifier. The insets show the near-field [lower in Fig. 4(b)] and far-field [upper in Fig. 4(b)] beam intensity profiles.

Fig. 5.
Fig. 5.

(a) Variation of M2 factor and spherical-aberration coefficient c13 of the output beam for a input beam with positive spherical aberrations. (b) output power from the amplifier. The insets show the near-field [lower in Fig. 5(b)] and far-field [upper in Fig. 5(b)] beam intensity profiles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M2=(Mdiff2)2+(Mab2)2,

Metrics