Abstract

We present a photon counting range-intensity image strategy based on a single-photon detector in low-light level environments. In this Letter, a composite modulation method over the pulse sequence was used for the first time, to the best of our knowledge, which combined pulse-position modulation and pulse-intensity modulation. This composite modulation method could obtain range and intensity of the detected target at the same time. Besides, angle-angle information could be provided from the scanner or detector array. Thus, a range-intensity image of the target became feasible. For demonstrating this photon counting range-intensity image strategy, a proof-of-principle laboratory system was established. In low-light level environments, a range-intensity image of multiple similar targets was obtained successfully with the range accuracy of centimeter level and intensity error of 1%. Compared with the range image, a range-intensity image could better reorganize and identify similar targets.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. L. Chun and F. A. Sadjadi, Opt. Lett. 30, 1806 (2005).
    [CrossRef]
  2. C. J. Karlsson, F. A. Olsson, D. Letalick, and M. Harris, Appl. Opt. 39, 3716 (2000).
    [CrossRef]
  3. M. Yamamoto, H. Yamamoto, and Y. Hayasaki, Opt. Express 34, 1081 (2009).
  4. I. Moon and B. Javidi, Opt. Lett. 34, 731 (2009).
    [CrossRef]
  5. M. Stipčević, Appl. Opt. 48, 1705 (2009).
    [CrossRef]
  6. P. Gatt, S. Johnson, and T. Nichols, Appl. Opt. 48, 3261 (2009).
    [CrossRef]
  7. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, Opt. Express 21, 1440 (2013).
    [CrossRef]
  8. H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, Opt. Express 19, 19323 (2011).
    [CrossRef]
  9. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, Opt. Lett. 32, 2266 (2007).
    [CrossRef]
  10. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, Appl. Opt. 48, 6241 (2009).
    [CrossRef]
  11. N. J. Krichel, A. M. Carthy, and G. S. Buller, Opt. Express 18, 9192 (2010).
    [CrossRef]
  12. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, Opt. Express 21, 8904 (2013).
    [CrossRef]
  13. A. McCarthy, X. Ren, A. D. Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, Opt. Express 21, 22098 (2013).
    [CrossRef]
  14. S. Johnson, P. Gatt, and T. Nichols, Proc. SPIE 5086, 359 (2003).
    [CrossRef]

2013 (3)

2011 (1)

2010 (1)

2009 (5)

2007 (1)

2005 (1)

2003 (1)

S. Johnson, P. Gatt, and T. Nichols, Proc. SPIE 5086, 359 (2003).
[CrossRef]

2000 (1)

Buller, G. S.

Carthy, A. M.

Chun, C. S. L.

Collins, R. J.

Dauler, E. A.

Dorenbos, S. N.

Fernández, V.

Frera, A. D.

Gatt, P.

P. Gatt, S. Johnson, and T. Nichols, Appl. Opt. 48, 3261 (2009).
[CrossRef]

S. Johnson, P. Gatt, and T. Nichols, Proc. SPIE 5086, 359 (2003).
[CrossRef]

Gemmell, N. R.

Hadfield, R. H.

Harris, M.

Hayasaki, Y.

M. Yamamoto, H. Yamamoto, and Y. Hayasaki, Opt. Express 34, 1081 (2009).

Hernandez-Marin, S.

Javidi, B.

Jo, S. E.

Johnson, S.

P. Gatt, S. Johnson, and T. Nichols, Appl. Opt. 48, 3261 (2009).
[CrossRef]

S. Johnson, P. Gatt, and T. Nichols, Proc. SPIE 5086, 359 (2003).
[CrossRef]

Karlsson, C. J.

Kerman, A. J.

Kim, T. H.

Kong, H. J.

Krichel, N. J.

Letalick, D.

McCarthy, A.

Molnar, R. J.

Moon, I.

Nam, S. W.

Nichols, T.

P. Gatt, S. Johnson, and T. Nichols, Appl. Opt. 48, 3261 (2009).
[CrossRef]

S. Johnson, P. Gatt, and T. Nichols, Proc. SPIE 5086, 359 (2003).
[CrossRef]

Oh, M. S.

Olsson, F. A.

Ren, X.

Rosenberg, D.

Ruggeri, A.

Sadjadi, F. A.

Scarcella, C.

Stipcevic, M.

Tanner, M. G.

Tosi, A.

Wallace, A. M.

Warburton, R. E.

Yamamoto, H.

M. Yamamoto, H. Yamamoto, and Y. Hayasaki, Opt. Express 34, 1081 (2009).

Yamamoto, M.

M. Yamamoto, H. Yamamoto, and Y. Hayasaki, Opt. Express 34, 1081 (2009).

Zwiller, V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the pulse sequence. (a) Traditional pulse-position modulation sequence based on the binary random symbol. (b) CMPS used in this Letter, which further modulates pulse intensity on the basis of pulse-intensity modulation.

Fig. 2.
Fig. 2.

(a) Principle diagram of the photon counting range-intensity imaging system. (b) Signal processing process in computer.

Fig. 3.
Fig. 3.

Intensity error δI/I. (a) δI/I versus n. (b) δI/I versus M. (c) δI/I in the linear area. (d) δI/I in the nonlinear area.

Fig. 4.
Fig. 4.

Photograph of laboratory system for the proof-of-principle experiment.

Fig. 5.
Fig. 5.

Photograph of the imaged target. The dashed box is the detection area.

Fig. 6.
Fig. 6.

Imaging results of 60×60 pixels. (a) Range image of target with angle-angle-range information. (b) Range-intensity image of the target with angle-angle-range-intensity information.

Fig. 7.
Fig. 7.

Data analysis of the imaging results for Fig. 6(b). (a) Range data statistics for No. 1, No. 2, and No. 3. (b) Intensity data statistics for parts A, B, and C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Pi=Mi/Mi.
Pi=1exp(iNsn).
Ns(i)=niln(1MiMi).
Ns¯=Ns(i)¯=1ni=1n[niln(1MiMi)].
δ(Ns¯)=1ni=1n[Ns(i)¯Mi]2=1ni=1n[1i·11Mi/Miδ(Mi)Mi]2=1ni=1n[1i2·1(1Pi)2MiPi(1P)iMi2]=1ni=1n[1i2·Pi(1Pi)Mi].
δII=δ(Ns¯)Ns=1Ns1ni=1n[1i2·Pi(1Pi)Mi]=1Nsi=1n[1i2·1exp(iNs/n)exp(iNs/n)M].

Metrics