Abstract

We report on the functional optical coherence tomography (OCT) imaging of iris tissue morphology and microcirculation in living small animals. Anterior segments of healthy mouse and rat eyes are imaged with high-speed spectral domain OCT (SD-OCT) utilizing ultrahigh sensitive optical microangiography (UHS-OMAG) imaging protocol. 3D iris microvasculature is produced by the use of an algorithm that calculates absolute differences between the amplitudes of the OCT interframes. We demonstrate that the UHS-OMAG is capable of delineating iris microvascular beds in the mouse and rat with capillary-level resolution. Furthermore, the fast imaging speed enables dynamic imaging of iris micro-vascular response during drug-induced pupil dilation. We believe that this OCT angiographic approach has a great potential for in situ and in vivo monitoring of the microcirculation within iris tissue beds in rodent disease models that have microvascular involvement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: AVI (2921 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription