Abstract

A reflection-enhanced dual-absorption InP-PIN/GaAs-DBR photodetector was fabricated and characterized. The photodetector is monolithically integrated using a heteroepitaxy growth of an InGaAs/InP dual-absorption “PINIP” structure on the GaAs/AlGaAs Bragg reflectors. These features lead to an increase in quantum efficiency over a wide wavelength range while maintaining a high speed. The measured quantum efficiency was increased by 48.8% in comparison with that without reflectors. A quantum efficiency of 64% at a wavelength of 1522 nm and a 3 dB bandwidth of 26 GHz at a reverse bias of 3 V were simultaneously obtained in the device.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Beling and J. C. Campbell, J. Lightwave Technol. 27, 343 (2009).
    [CrossRef]
  2. D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
    [CrossRef]
  3. H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
    [CrossRef]
  4. M. S. Ünlü and S. Strite, J. Appl. Phys. 78, 607 (1995).
    [CrossRef]
  5. X. Ren and J. C. Campbell, IEEE J. Quantum Electron. 32, 1903 (1996).
    [CrossRef]
  6. K. Liu, Y. Huang, and X. Ren, Appl. Opt. 39, 4263 (2000).
    [CrossRef]
  7. X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
    [CrossRef]
  8. H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, Q. Wang, and Y. Huang, Appl. Opt. 45, 8448 (2006).
    [CrossRef]
  9. X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
    [CrossRef]
  10. R. Sankaralingam and P. Fay, IEEE Photon. Technol. Lett. 17, 1513 (2005).
    [CrossRef]
  11. B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
    [CrossRef]
  12. T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013).
    [CrossRef]
  13. A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
    [CrossRef]
  14. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
    [CrossRef]
  15. X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010).
    [CrossRef]

2013

D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[CrossRef]

T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013).
[CrossRef]

2012

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

2011

X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
[CrossRef]

2010

B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010).
[CrossRef]

2009

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[CrossRef]

2006

2005

R. Sankaralingam and P. Fay, IEEE Photon. Technol. Lett. 17, 1513 (2005).
[CrossRef]

2004

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

2000

1996

X. Ren and J. C. Campbell, IEEE J. Quantum Electron. 32, 1903 (1996).
[CrossRef]

1995

M. S. Ünlü and S. Strite, J. Appl. Phys. 78, 607 (1995).
[CrossRef]

1991

A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
[CrossRef]

Asghari, M.

D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[CrossRef]

Beling, A.

Cai, S.

X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010).
[CrossRef]

Campbell, J. C.

A. Beling and J. C. Campbell, J. Lightwave Technol. 27, 343 (2009).
[CrossRef]

X. Ren and J. C. Campbell, IEEE J. Quantum Electron. 32, 1903 (1996).
[CrossRef]

A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[CrossRef]

Chen, D.

B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
[CrossRef]

Cui, H.

Dentai, A. G.

A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
[CrossRef]

Dhanavantri, C.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Duan, X.

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010).
[CrossRef]

Fan, X.

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

Fay, P.

R. Sankaralingam and P. Fay, IEEE Photon. Technol. Lett. 17, 1513 (2005).
[CrossRef]

Feng, D.

D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[CrossRef]

Halbritter, H.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Hu, F.

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

Huang, H.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[CrossRef]

Huang, Y.

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, Q. Wang, and Y. Huang, Appl. Opt. 45, 8448 (2006).
[CrossRef]

K. Liu, Y. Huang, and X. Ren, Appl. Opt. 39, 4263 (2000).
[CrossRef]

Kuchibhotla, R.

A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
[CrossRef]

Kwasniewski, T. A.

B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
[CrossRef]

Lei, C.

A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
[CrossRef]

Li, Y.

Liang, B.

B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
[CrossRef]

Liang, H.

D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[CrossRef]

Liu, K.

Luff, B. J.

D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[CrossRef]

Luo, Y.

T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013).
[CrossRef]

Meissner, P.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Miao, A.

Qian, W.

D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[CrossRef]

Ren, X.

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, Q. Wang, and Y. Huang, Appl. Opt. 45, 8448 (2006).
[CrossRef]

K. Liu, Y. Huang, and X. Ren, Appl. Opt. 39, 4263 (2000).
[CrossRef]

X. Ren and J. C. Campbell, IEEE J. Quantum Electron. 32, 1903 (1996).
[CrossRef]

Riemenschneider, F.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Sagnes, I.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Sankaralingam, R.

R. Sankaralingam and P. Fay, IEEE Photon. Technol. Lett. 17, 1513 (2005).
[CrossRef]

Shang, Y.

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

Shi, T.

T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013).
[CrossRef]

Singh, B. R.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Strassner, M.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Strite, S.

M. S. Ünlü and S. Strite, J. Appl. Phys. 78, 607 (1995).
[CrossRef]

Sun, C.

T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013).
[CrossRef]

Syguda, S.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Tarraf, A.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

Tsai, C.

A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü and S. Strite, J. Appl. Phys. 78, 607 (1995).
[CrossRef]

Wang, B.

B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
[CrossRef]

Wang, Q.

Wang, W.

X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, Q. Wang, and Y. Huang, Appl. Opt. 45, 8448 (2006).
[CrossRef]

Wang, X.

Wang, Z.

B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
[CrossRef]

Xie, S.

Xiong, B.

T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[CrossRef]

Appl. Opt.

Electron. Lett.

A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991).
[CrossRef]

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004).
[CrossRef]

IEEE J. Quantum Electron.

X. Ren and J. C. Campbell, IEEE J. Quantum Electron. 32, 1903 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012).
[CrossRef]

R. Sankaralingam and P. Fay, IEEE Photon. Technol. Lett. 17, 1513 (2005).
[CrossRef]

T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013).
[CrossRef]

IEEE Trans. Electron Devices

B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010).
[CrossRef]

IEEE Trans. Electron. Devices

X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011).
[CrossRef]

J. Appl. Phys.

M. S. Ünlü and S. Strite, J. Appl. Phys. 78, 607 (1995).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of a vertically illuminated mesa structure. (a) Conventional single-absorption PIN photodetector. (b) Dual-absorption photodetector with Bragg reflectors.

Fig. 2.
Fig. 2.

Schematic layout of a reflection-enhanced dual-absorption InP-PIN/GaAs-DBR photodetector. The coplanar waveguide pad is used for on-wafer high-speed measurement.

Fig. 3.
Fig. 3.

Optical micrograph of the fabricated reflection-enhanced dual-absorption InP-PIN/GaAs-DBR photodetector.

Fig. 4.
Fig. 4.

Measured response spectrum of the reflection-enhanced dual-absorption InP-PIN/GaAs-DBR photodetector (solid line) and the dual-absorption photodetector without DBRs (dash line).

Fig. 5.
Fig. 5.

Reflection spectra of the GaAs/AlGaAs Bragg reflector. The layer thicknesses are λ0/4n, where n is the index of the material and λ0 is the center wavelength.

Fig. 6.
Fig. 6.

Measured dark current against the reverse bias of the device. The dark current is 9.5 nA at a reverse bias of 3 V.

Fig. 7.
Fig. 7.

Relative frequency response of the reflection-enhanced dual-absorption InP-PIN/GaAs-DBR photodetector. The 3 dB bandwidth of the device is 26 GHz with a reverse bias of 3.0 V and an optical input power of 1 mW at 1550 nm wavelength.

Tables (1)

Tables Icon

Table 1. Epitaxial Structure of the Reflection-Enhanced Dual-Absorption Photodetector

Metrics