Abstract

A new microwave photonic instantaneous frequency measurement system that can simultaneously measure multiple-frequency signals while achieving very high resolution and wide frequency measurement range is presented. It is based on the frequency-to-time mapping technique implemented using a frequency shifting recirculating delay line loop and a narrowband optical filter realized by the in-fiber stimulated Brillouin scattering effect. Experimental results demonstrate the realization of a multiple-frequency measurement capability over a frequency range of 0.1–20 GHz that can be extended to 90 GHz, and with a measurement resolution of 250 MHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications (Wiley, 1986).
  2. Specifications IFM receivers 0.5–18.0  GHz, Wide Band Systems, Inc.
  3. R. A. Minasian, E. H. W. Chan, and X. Yi, Opt. Express 21, 22918 (2013).
    [CrossRef]
  4. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
    [CrossRef]
  5. X. H. Zou, S. L. Pan, and J. Yao, J. Lightwave Technol. 27, 5314 (2009).
    [CrossRef]
  6. W. Li, N. H. Zhu, and L. X. Wang, Opt. Lett. 37, 166 (2012).
    [CrossRef]
  7. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, Opt. Lett. 34, 3794 (2009).
    [CrossRef]
  8. S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012).
    [CrossRef]
  9. Y. Xiao, J. Guo, K. Wu, W. Dong, P. Qu, X. Zhang, S. Ruan, and W. Chen, Opt. Express 21, 31740 (2013).
    [CrossRef]
  10. B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microw. Theory Tech. 58, 3103 (2010).
    [CrossRef]
  11. H. Emami, N. Sarkhosh, and M. Ashourian, Appl. Opt. 52, 5508 (2013).
    [CrossRef]
  12. L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009).
    [CrossRef]
  13. H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, Opt. Lett. 38, 136 (2013).
    [CrossRef]
  14. A. R. Chraplyvy and R. W. Tkach, Electron. Lett. 22, 1084 (1986).
    [CrossRef]
  15. T. Tanemura, Y. Takushima, and K. Kikuchi, Opt. Lett. 27, 1552 (2002).
    [CrossRef]
  16. E. H. W. Chan and R. A. Minasian, Opt. Laser Technol. 45, 160 (2013).
    [CrossRef]

2013 (5)

2012 (2)

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012).
[CrossRef]

W. Li, N. H. Zhu, and L. X. Wang, Opt. Lett. 37, 166 (2012).
[CrossRef]

2010 (1)

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microw. Theory Tech. 58, 3103 (2010).
[CrossRef]

2009 (3)

2006 (1)

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

2002 (1)

1986 (1)

A. R. Chraplyvy and R. W. Tkach, Electron. Lett. 22, 1084 (1986).
[CrossRef]

Ashourian, M.

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, Opt. Laser Technol. 45, 160 (2013).
[CrossRef]

R. A. Minasian, E. H. W. Chan, and X. Yi, Opt. Express 21, 22918 (2013).
[CrossRef]

Chen, W.

Chen, Y.

Chi, H.

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, Opt. Lett. 38, 136 (2013).
[CrossRef]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012).
[CrossRef]

Chraplyvy, A. R.

A. R. Chraplyvy and R. W. Tkach, Electron. Lett. 22, 1084 (1986).
[CrossRef]

Dong, W.

Emami, H.

Ge, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012).
[CrossRef]

Guo, J.

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Jin, X.

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, Opt. Lett. 38, 136 (2013).
[CrossRef]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012).
[CrossRef]

Kikuchi, K.

Li, W.

Margulis, W.

Marti, J.

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microw. Theory Tech. 58, 3103 (2010).
[CrossRef]

Mei, Y.

Mengual, T.

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microw. Theory Tech. 58, 3103 (2010).
[CrossRef]

Minasian, R. A.

R. A. Minasian, E. H. W. Chan, and X. Yi, Opt. Express 21, 22918 (2013).
[CrossRef]

E. H. W. Chan and R. A. Minasian, Opt. Laser Technol. 45, 160 (2013).
[CrossRef]

Nguyen, L. V. T.

L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Pan, S. L.

Qu, P.

Ruan, S.

Rugeland, P.

Sarkhosh, N.

Sterner, C.

Takushima, Y.

Tanemura, T.

Tarasenko, O.

Tengstrand, G.

Tkach, R. W.

A. R. Chraplyvy and R. W. Tkach, Electron. Lett. 22, 1084 (1986).
[CrossRef]

Tsui, J. B. Y.

J. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications (Wiley, 1986).

Vidal, B.

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microw. Theory Tech. 58, 3103 (2010).
[CrossRef]

Wang, L. X.

Wu, K.

Xiao, Y.

Yao, J.

Yi, X.

Yu, Z.

Zhang, X.

Zheng, S.

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, Opt. Lett. 38, 136 (2013).
[CrossRef]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012).
[CrossRef]

Zhu, N. H.

Zou, X. H.

Appl. Opt. (1)

Electron. Lett. (1)

A. R. Chraplyvy and R. W. Tkach, Electron. Lett. 22, 1084 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microw. Theory Tech. 58, 3103 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Laser Technol. (1)

E. H. W. Chan and R. A. Minasian, Opt. Laser Technol. 45, 160 (2013).
[CrossRef]

Opt. Lett. (4)

Other (2)

J. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications (Wiley, 1986).

Specifications IFM receivers 0.5–18.0  GHz, Wide Band Systems, Inc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Topology and (b) principle of operation of the new IFM technique based on FS-RDL and SBS.

Fig. 2.
Fig. 2.

Measured photocurrent waveform on the oscilloscope after the PD when a single frequency signal with different frequencies is injected into the phase modulator.

Fig. 3.
Fig. 3.

(a) Measured and simulated time delay of the RF pulse shown on the oscilloscope versus the input signal frequency. (b) Measurement errors for different frequency microwave signals.

Fig. 4.
Fig. 4.

Measured photocurrent waveform on the oscilloscope after the PD for different pairs of two-tone input frequency signals. The horizontal axis is normalized time showing the number of circulations; 1division=5circulations=7.5μs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

fRF=tkt0TΔf=(n0+kn0)Δf,
E(t)=A0ejw0tejφ(t)+Amejφ(t)[ej(w0+wRF)tej(w0wRF)t],
E(tON+nT)=i=1NCi{A0iej(w0+nΔw)(tON+(ni)T)·ejφ(tON+(ni)T)+Amiejφ(tON+(ni)T)·[ej(w0+nΔw+wRF)(tON+(ni)T)ej(w0+nΔwwRF)(tON+(ni)T)]},
Ci={10y/20ifi=n1ifin,
i(tON+nT)={A0n02ifn=n0Amn0k2ifn=n0kAmn0+k2ifn=n0+k10y/20A0n02other cases.
i(tOFF+nT)=10y/20A0n02.

Metrics