Abstract

We characterize stimulated Brillouin scattering (SBS) of visible light in small-core photonic crystal fiber (PCF). Threshold powers under 532 nm excitation agree with established theory, in contrast to measured values up to five times greater than expected for Brillouin scattering of 1550 nm light. An isolated, single-peaked signal at a Stokes shift of 33.5 GHz is observed, distinct from the multi-peaked Stokes spectra expected when small-core PCF is pumped in the infrared. This wavelength-dependence of the Brillouin threshold, and the corresponding spectrum, are explained by the acousto-optic interactions in the fiber, governed by dimensionless length scales that relate the modal area to the core size, and the pump wavelength to PCF hole pitch. Our results suggest new opportunities for exploiting SBS of visible light in small-core PCFs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  2. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
    [CrossRef]
  3. I. Bongrand, É. Picholle, and C. Montes, Eur. Phys. J. D 20, 121 (2002).
    [CrossRef]
  4. J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, Opt. Express 15, 15517 (2007).
    [CrossRef]
  5. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, Opt. Lett. 27, 927 (2002).
    [CrossRef]
  6. J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba, J. Opt. Soc. Am. B 25, 582 (2008).
    [CrossRef]
  7. J. E. McElhenny, R. Pattnaik, and J. Toulouse, J. Opt. Soc. Am. B 25, 2107 (2008).
    [CrossRef]
  8. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef]
  9. M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
    [CrossRef]
  10. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, Opt. Lett. 26, 488 (2001).
    [CrossRef]
  11. R. G. Smith, Appl. Opt. 11, 2489 (1972).
    [CrossRef]
  12. B. Y. Zel’dovich and A. N. Pilipetskii, Sov. J Quantum Electron. 16, 546 (1986).

2008 (2)

2007 (1)

2006 (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

2002 (2)

2001 (2)

1994 (1)

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

1986 (1)

B. Y. Zel’dovich and A. N. Pilipetskii, Sov. J Quantum Electron. 16, 546 (1986).

1972 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Alasia, D.

Belardi, W.

Beugnot, J.-C.

Bongrand, I.

I. Bongrand, É. Picholle, and C. Montes, Eur. Phys. J. D 20, 121 (2002).
[CrossRef]

Boot, A. J.

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Botten, L. C.

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

de Sterke, C. M.

Fragnito, H. L.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Ibsen, M.

Joannopoulos, J. D.

Johnson, S. G.

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Koshiba, M.

Laude, V.

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, Opt. Express 15, 15517 (2007).
[CrossRef]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Lee, J. H.

Mafang, S. F.

Maillotte, H.

McElhenny, J. E.

McPhedran, R. C.

Monro, T. M.

Montes, C.

I. Bongrand, É. Picholle, and C. Montes, Eur. Phys. J. D 20, 121 (2002).
[CrossRef]

Monteville, A.

Pattnaik, R.

Pattnaik, R. K.

Picholle, É.

I. Bongrand, É. Picholle, and C. Montes, Eur. Phys. J. D 20, 121 (2002).
[CrossRef]

Pilipetskii, A. N.

B. Y. Zel’dovich and A. N. Pilipetskii, Sov. J Quantum Electron. 16, 546 (1986).

Provino, L.

Richardson, D. J.

Saitoh, K.

Smith, R. G.

St. J. Russell, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Steel, M. J.

Sylvestre, T.

Thévenaz, L.

Toulouse, J.

Traynor, N.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

White, T. P.

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Yusoff, Z.

Zel’dovich, B. Y.

B. Y. Zel’dovich and A. N. Pilipetskii, Sov. J Quantum Electron. 16, 546 (1986).

Appl. Opt. (1)

Eur. Phys. J. D (1)

I. Bongrand, É. Picholle, and C. Montes, Eur. Phys. J. D 20, 121 (2002).
[CrossRef]

J. Lightwave Technol. (1)

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Sov. J Quantum Electron. (1)

B. Y. Zel’dovich and A. N. Pilipetskii, Sov. J Quantum Electron. 16, 546 (1986).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Setup: HWP, half-wave plate; (P)BS, (polarizing) beam splitter. (b) SEM images of PCF-1 microstructure at different magnifications.

Fig. 2.
Fig. 2.

Backscattered and transmitted powers in PCF-1 as a function of launched pump power (a) and input polarization angle (b). The highest Brillouin gain was observed for light aligned along a fiber principal axis (0°), approximately double the value for light polarized between axes (45°).

Fig. 3.
Fig. 3.

Brillouin backscattered spectrum in PCF-1 from a scanning interferometer with 2.9 GHz FSR (top inset: with 42.2 GHz FSR, showing the Brillouin shift from the pump) for 0.5 W launched pump power aligned to a PCF principal axis. Bottom inset: output beam profile from a CCD camera.

Fig. 4.
Fig. 4.

(a) Brillouin backscattered spectra in PCF-2 for 532 and 1550 nm pump light showing strong asymmetry at 1550 nm (inset: SEM images of PCF-2 microstructure). (b) electric field densities of the fundamental mode, showing much weaker core-confinement at 1550 nm than at 532 nm.

Tables (1)

Tables Icon

Table 1. PCF-2 Properties at 532 and 1550  nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pth=21KAeffgBLeff,
Aeff=(|E(x,y)|2dxdy)2|E(x,y)|4dxdy,

Metrics