Abstract

We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).
  2. J.-H. Park, K. Hong, and B. Lee, Appl. Opt. 48, H77 (2009).
    [CrossRef]
  3. K.-C. Kwon, C. Park, M.-U. Erdenebat, J.-S. Jeong, J.-H. Choi, N. Kim, J.-H. Park, Y.-T. Lim, and K.-H. Yoo, Opt. Express 20, 732 (2012).
    [CrossRef]
  4. G. Baasantseren, J.-H. Park, M.-U. Erdenebat, S.-W. Seo, and N. Kim, J. Soc. Inf. Disp. 18, 519 (2010).
    [CrossRef]
  5. J. Kim, S.-W. Min, Y. Kim, and B. Lee, Appl. Opt. 47, D80 (2008).
    [CrossRef]
  6. J.-S. Jang and B. Javidi, Appl. Opt. 42, 1996 (2003).
    [CrossRef]
  7. S. Jung, J.-H. Park, H. Choi, and B. Lee, Opt. Express 11, 1346 (2003).
    [CrossRef]
  8. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, Appl. Opt. 44, 546 (2005).
    [CrossRef]
  9. R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, Opt. Express 15, 16255 (2007).
    [CrossRef]
  10. H. Kim, J. Hahn, and B. Lee, Opt. Express 16, 21865 (2008).
    [CrossRef]
  11. G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, Opt. Express 17, 14405 (2009).
    [CrossRef]
  12. M. A. Alam, M.-L. Piao, L. T. Bang, and N. Kim, Appl. Opt. 52, 6969 (2013).
    [CrossRef]
  13. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).
  14. M.-U. Erdenebat, G. Baasantseren, N. Kim, K.-C. Kwon, J. Byeon, K.-H. Yoo, and J.-H. Park, J. Opt. Soc. Korea 16, 365 (2012).
    [CrossRef]
  15. M.-U. Erdenebat, G. Baasantseren, J.-H. Park, N. Kim, K.-C. Kwon, Y.-H. Jang, and K.-H. Yoo, Proc. SPIE 7863, 7863OU (2011).
    [CrossRef]
  16. D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, Proc. SPIE 8288, 82881H (2012).
    [CrossRef]

2013

2012

2011

M.-U. Erdenebat, G. Baasantseren, J.-H. Park, N. Kim, K.-C. Kwon, Y.-H. Jang, and K.-H. Yoo, Proc. SPIE 7863, 7863OU (2011).
[CrossRef]

2010

G. Baasantseren, J.-H. Park, M.-U. Erdenebat, S.-W. Seo, and N. Kim, J. Soc. Inf. Disp. 18, 519 (2010).
[CrossRef]

2009

2008

2007

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).

R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, Opt. Express 15, 16255 (2007).
[CrossRef]

2005

2003

1908

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

Akasaka, N.

D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, Proc. SPIE 8288, 82881H (2012).
[CrossRef]

Alam, M. A.

Baasantseren, G.

M.-U. Erdenebat, G. Baasantseren, N. Kim, K.-C. Kwon, J. Byeon, K.-H. Yoo, and J.-H. Park, J. Opt. Soc. Korea 16, 365 (2012).
[CrossRef]

M.-U. Erdenebat, G. Baasantseren, J.-H. Park, N. Kim, K.-C. Kwon, Y.-H. Jang, and K.-H. Yoo, Proc. SPIE 7863, 7863OU (2011).
[CrossRef]

G. Baasantseren, J.-H. Park, M.-U. Erdenebat, S.-W. Seo, and N. Kim, J. Soc. Inf. Disp. 18, 519 (2010).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, Opt. Express 17, 14405 (2009).
[CrossRef]

Bang, L. T.

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).

Byeon, J.

Choi, H.

Choi, J.-H.

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).

Erdenebat, M.-U.

K.-C. Kwon, C. Park, M.-U. Erdenebat, J.-S. Jeong, J.-H. Choi, N. Kim, J.-H. Park, Y.-T. Lim, and K.-H. Yoo, Opt. Express 20, 732 (2012).
[CrossRef]

M.-U. Erdenebat, G. Baasantseren, N. Kim, K.-C. Kwon, J. Byeon, K.-H. Yoo, and J.-H. Park, J. Opt. Soc. Korea 16, 365 (2012).
[CrossRef]

M.-U. Erdenebat, G. Baasantseren, J.-H. Park, N. Kim, K.-C. Kwon, Y.-H. Jang, and K.-H. Yoo, Proc. SPIE 7863, 7863OU (2011).
[CrossRef]

G. Baasantseren, J.-H. Park, M.-U. Erdenebat, S.-W. Seo, and N. Kim, J. Soc. Inf. Disp. 18, 519 (2010).
[CrossRef]

Hahn, J.

Hong, K.

Jang, J.-S.

Jang, Y.-H.

M.-U. Erdenebat, G. Baasantseren, J.-H. Park, N. Kim, K.-C. Kwon, Y.-H. Jang, and K.-H. Yoo, Proc. SPIE 7863, 7863OU (2011).
[CrossRef]

Javidi, B.

Jeong, J.-S.

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).

Jung, S.

Kim, H.

Kim, J.

Kim, N.

Kim, Y.

Kwon, K.-C.

Lee, B.

Lim, Y.-T.

Lippmann, G.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

Maeda, Y.

D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, Proc. SPIE 8288, 82881H (2012).
[CrossRef]

Martinez-Corral, M.

Martinez-Cuenca, R.

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).

Min, S.-W.

Miyazaki, D.

D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, Proc. SPIE 8288, 82881H (2012).
[CrossRef]

Mukai, T.

D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, Proc. SPIE 8288, 82881H (2012).
[CrossRef]

Navarro, H.

Okoda, K.

D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, Proc. SPIE 8288, 82881H (2012).
[CrossRef]

Park, C.

Park, J.-H.

Piao, M.-L.

Saavedra, G.

Seo, S.-W.

G. Baasantseren, J.-H. Park, M.-U. Erdenebat, S.-W. Seo, and N. Kim, J. Soc. Inf. Disp. 18, 519 (2010).
[CrossRef]

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).

Yoo, K.-H.

Appl. Opt.

C. R. Acad. Sci.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

J. Opt. Soc. Korea

J. Soc. Inf. Disp.

G. Baasantseren, J.-H. Park, M.-U. Erdenebat, S.-W. Seo, and N. Kim, J. Soc. Inf. Disp. 18, 519 (2010).
[CrossRef]

Opt. Express

Proc. ACM SIGGRAPH

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, Proc. ACM SIGGRAPH 26, 1 (2007).

Proc. SPIE

M.-U. Erdenebat, G. Baasantseren, J.-H. Park, N. Kim, K.-C. Kwon, Y.-H. Jang, and K.-H. Yoo, Proc. SPIE 7863, 7863OU (2011).
[CrossRef]

D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, Proc. SPIE 8288, 82881H (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic configuration of the proposed method and (b) EIA calculation steps for each 3D object point in the AOS space.

Fig. 2.
Fig. 2.

Calculation of the reflected representation from the corresponding 3D object point through the AOS.

Fig. 3.
Fig. 3.

(a) For the given character B, (b) the proposed method generates an EIA, which is extended in the vertical direction, compared with (c) an EIA generated by the conventional 360 degree IFD pickup process.

Fig. 4.
Fig. 4.

Optical devices required in the real experiment on the optical table.

Fig. 5.
Fig. 5.

(a) Two point cloud 3D objects with different information, (b) their representations from multiple viewing directions from 0, Hor.135 and Hor.315 degree around the object, and (c) the generated EIAs for the corresponding view perspectives.

Fig. 6.
Fig. 6.

Displayed image in the AOS space captured from nine viewing directions: the front (0 degree), some side views around the display horizontally (Hor.135 and Hor.315 degree), the top ( Ver. + 25 degree ) and bottom ( Ver. 25 degree ) views along the vertical direction.

Fig. 7.
Fig. 7.

Comparison for the VVA between (a) proposed and (b) conventional 360 degree IFD system when using the object “skeleton of a pyramid.”

Tables (1)

Tables Icon

Table 1. Specifications for the Objects and Optical Devices

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ u , v , w ] = [ x cos φ + y cos ( 90 ° + φ ) , x sin φ + y cos φ + z 2 , x sin φ + y cos φ z 2 ]
[ u , v , w ] = [ u , f m v w ( f m w ) 2 , f m w f m w ] ,
Δ θ = arctan ( f m v max w v max v max ( f m w v max ) 2 f m w v max ( f m w v max ) ) ,
[ x , y , z ] = [ 2 u cos φ v sin φ w sin φ 2 , 2 u cos ( 90 ° + φ ) v cos φ w cos φ 2 , w v 2 ] .
[ x , y , z ] = [ x f FL 1 f FL 2 , y f FL 1 f FL 2 , g f LA + z f FL 1 2 g f LA + f FL 2 2 ] ,

Metrics