Abstract

We present a new approach for obtaining significant speedup in the digital processing of extracting unwrapped phase profiles from off-axis digital holograms. The new technique digitally multiplexes two orthogonal off-axis holograms, where the digital reconstruction, including spatial filtering and two-dimensional phase unwrapping on a decreased number of pixels, can be performed on both holograms together, without redundant operations. Using this technique, we were able to reconstruct, for the first time to our knowledge, unwrapped phase profiles from off-axis holograms with 1 megapixel in more than 30 frames per second using a standard single-core personal computer on a MATLAB platform, without using graphic-processing-unit programming or parallel computing. This new technique is important for real-time quantitative visualization and measurements of highly dynamic samples and is applicable for a wide range of applications, including rapid biological cell imaging and real-time nondestructive testing. After comparing the speedups obtained by the new technique for holograms of various sizes, we present experimental results of real-time quantitative phase visualization of cells flowing rapidly through a microchannel.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Girshovitz and N. T. Shaked, Biomed. Opt. Express 3, 1757 (2012).
    [CrossRef]
  2. B. Kemper, P. Langehanenberg, and G. von Bally, Opt. Photon. 2, 41 (2007).
    [CrossRef]
  3. H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, Biomed. Opt. Express 2, 1781 (2011).
    [CrossRef]
  4. T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, Opt. Express 18, 9955 (2010).
    [CrossRef]
  5. P. Girshovitz and N. T. Shaked, Light Sci. Appl. 3, e151 (2014).
    [CrossRef]
  6. M. Paturzo, P. Memmolo, A. Tulino, A. Finizio, and P. Ferraro, Opt. Express 17, 8709 (2009).
    [CrossRef]
  7. P. Girshovitz and N. T. Shaked, Opt. Express 21, 5701 (2013).
    [CrossRef]
  8. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, Appl. Opt. 41, 7437 (2002).
    [CrossRef]

2014 (1)

P. Girshovitz and N. T. Shaked, Light Sci. Appl. 3, e151 (2014).
[CrossRef]

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

2007 (1)

B. Kemper, P. Langehanenberg, and G. von Bally, Opt. Photon. 2, 41 (2007).
[CrossRef]

2002 (1)

Burton, D. R.

Ding, H.

Do, M.

Ferraro, P.

Finizio, A.

Gdeisat, M. A.

Girshovitz, P.

Herráez, M. A.

Ichihashi, Y.

Ito, T.

Kemper, B.

B. Kemper, P. Langehanenberg, and G. von Bally, Opt. Photon. 2, 41 (2007).
[CrossRef]

Lalor, M. J.

Langehanenberg, P.

B. Kemper, P. Langehanenberg, and G. von Bally, Opt. Photon. 2, 41 (2007).
[CrossRef]

Masuda, N.

Memmolo, P.

Patel, S.

Paturzo, M.

Pham, H.

Popescu, G.

Shaked, N. T.

Shimobaba, T.

Sobh, N.

Takada, N.

Tulino, A.

von Bally, G.

B. Kemper, P. Langehanenberg, and G. von Bally, Opt. Photon. 2, 41 (2007).
[CrossRef]

Supplementary Material (1)

» Media 1: MPEG (4332 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Algorithm A: conventional algorithm for extracting quantitative phase profiles from off-axis holograms.

Fig. 2.
Fig. 2.

Algorithm B: cropped cross-correlation algorithm for extracting quantitative phase profiles from off-axis holograms.

Fig. 3.
Fig. 3.

Algorithm C: hologram-multiplexing algorithm for extraction of the quantitative phase profiles from off-axis holograms.

Fig. 4.
Fig. 4.

(a) Phase reconstruction quality comparison for a phase 1951 USAF test target. (b) Cross sections along the black lines shown in (a).

Fig. 5.
Fig. 5.

Comparison between the frame rates (fps) obtained by the various algorithms for holograms containing 256×256, 512×512, 768×768, and 1024×1024 pixels. Vertical axis is logarithmic.

Fig. 6.
Fig. 6.

Fast quantitative phase imaging of blood and epithelial cells flowing rapidly in a microchannel, obtained by applying Algorithm C. The clotted blood borders are indicated by solid white lines (see dynamics in Media 1).

Tables (1)

Tables Icon

Table 1. Comparison between the Processing Times (ms) of a Single Hologram Containing 1024×1024 Pixels

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H=|Es+Er|2=|Es|2+|Er|2+Es*Er+EsEr*=Ir+s+2|Es||Er|cos(2πλ[OPDxsin(θ)]),

Metrics