Abstract

Focusing positively chirped femtosecond pulses into nonlinear fibers provides significant spectral broadening and compression at higher pulse energies than achievable conventionally because self-focusing and damage are avoided. Here, we investigate the transfer of input to output chirp in such an arrangement. Our measurements show that the group delay dispersion of the output pulse, originating from the nonlinearities, is considerably reduced as compared to the initial value, by about a factor of 10. The mechanism of chirp reduction is understood by an interplay of self-phase modulation with initial chirp within the fiber. A simple model calculation based on this picture yields satisfactory agreement with the observations and predicts significant chirp reduction for input pulses up to the μJ regime. In practice, the reduction of chirp observed here allows for compressing the spectrally broadened intense pulses by ultrabroadband dispersive multilayer mirrors of quite moderate dispersion.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
    [CrossRef]
  2. P. Dombi and P. Antal, Laser Phys. Lett. 4, 538 (2007).
    [CrossRef]
  3. A. Fuerbach, C. Miese, W. Koehler, and M. Geissler, Opt. Express 17, 5905 (2009).
    [CrossRef]
  4. W. Koehler and G. Tempea, Proc. SPIE 7582, 75820B (2010).
    [CrossRef]
  5. J. Fekete, P. Rácz, and P. Dombi, Appl. Phys. B 111, 415 (2013).
    [CrossRef]
  6. T. Ganz, V. Pervak, A. Apolonski, and P. Baum, Opt. Lett. 36, 1107 (2011).
    [CrossRef]
  7. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
    [CrossRef]
  8. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, Opt. Express 17, 7943 (2009).
    [CrossRef]
  9. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  10. V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, Opt. Express 21, 18311 (2013).
    [CrossRef]
  11. A. Klenke, M. Kienel, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 4593 (2013).
    [CrossRef]
  12. P. Baum, Chem. Phys. 423, 55 (2013).
    [CrossRef]
  13. F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photonics 8, 52 (2014).
    [CrossRef]
  14. P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).
  15. T. Ganz, “Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy,” Ph.D. thesis (LMU München, 2011).

2014 (1)

F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photonics 8, 52 (2014).
[CrossRef]

2013 (5)

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

J. Fekete, P. Rácz, and P. Dombi, Appl. Phys. B 111, 415 (2013).
[CrossRef]

P. Baum, Chem. Phys. 423, 55 (2013).
[CrossRef]

V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, Opt. Express 21, 18311 (2013).
[CrossRef]

A. Klenke, M. Kienel, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 4593 (2013).
[CrossRef]

2011 (1)

2010 (1)

W. Koehler and G. Tempea, Proc. SPIE 7582, 75820B (2010).
[CrossRef]

2009 (2)

2007 (2)

P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
[CrossRef]

P. Dombi and P. Antal, Laser Phys. Lett. 4, 538 (2007).
[CrossRef]

2005 (1)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Ahmad, I.

Antal, P.

P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
[CrossRef]

P. Dombi and P. Antal, Laser Phys. Lett. 4, 538 (2007).
[CrossRef]

Apolonski, A.

T. Ganz, V. Pervak, A. Apolonski, and P. Baum, Opt. Lett. 36, 1107 (2011).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Baum, P.

F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photonics 8, 52 (2014).
[CrossRef]

P. Baum, Chem. Phys. 423, 55 (2013).
[CrossRef]

T. Ganz, V. Pervak, A. Apolonski, and P. Baum, Opt. Lett. 36, 1107 (2011).
[CrossRef]

Dombi, P.

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

J. Fekete, P. Rácz, and P. Dombi, Appl. Phys. B 111, 415 (2013).
[CrossRef]

P. Dombi and P. Antal, Laser Phys. Lett. 4, 538 (2007).
[CrossRef]

P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Eidam, T.

Fedorov, V.

Fekete, J.

J. Fekete, P. Rácz, and P. Dombi, Appl. Phys. B 111, 415 (2013).
[CrossRef]

P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
[CrossRef]

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Fuerbach, A.

Ganz, T.

T. Ganz, V. Pervak, A. Apolonski, and P. Baum, Opt. Lett. 36, 1107 (2011).
[CrossRef]

T. Ganz, “Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy,” Ph.D. thesis (LMU München, 2011).

Geissler, M.

Gliserin, A.

F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photonics 8, 52 (2014).
[CrossRef]

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Hädrich, S.

Hohenester, U.

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

Hörl, A.

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

Kienel, M.

Kirchner, F. O.

F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photonics 8, 52 (2014).
[CrossRef]

Klenke, A.

Koehler, W.

Krausz, F.

F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photonics 8, 52 (2014).
[CrossRef]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, Opt. Express 17, 7943 (2009).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Krenn, J. R.

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

Limpert, J.

Márton, I.

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

Miese, C.

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Pervak, V.

Pervak, Y. A.

Rácz, P.

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

J. Fekete, P. Rácz, and P. Dombi, Appl. Phys. B 111, 415 (2013).
[CrossRef]

Szipocs, R.

P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
[CrossRef]

Tempea, G.

W. Koehler and G. Tempea, Proc. SPIE 7582, 75820B (2010).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M.

Trubetskov, M. K.

Trügler, A.

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

Tünnermann, A.

Várallyay, Z.

P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
[CrossRef]

Appl. Phys. B (2)

P. Dombi, P. Antal, J. Fekete, R. Szipőcs, and Z. Várallyay, Appl. Phys. B 88, 379 (2007).
[CrossRef]

J. Fekete, P. Rácz, and P. Dombi, Appl. Phys. B 111, 415 (2013).
[CrossRef]

Chem. Phys. (1)

P. Baum, Chem. Phys. 423, 55 (2013).
[CrossRef]

Laser Phys. Lett. (1)

P. Dombi and P. Antal, Laser Phys. Lett. 4, 538 (2007).
[CrossRef]

Nano Lett. (1)

P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

Nat. Photonics (1)

F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photonics 8, 52 (2014).
[CrossRef]

New J. Phys. (1)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

W. Koehler and G. Tempea, Proc. SPIE 7582, 75820B (2010).
[CrossRef]

Other (2)

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

T. Ganz, “Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy,” Ph.D. thesis (LMU München, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Concept of our measurement of chirp transfer during broadening of stretched pulses in a large-mode-area fiber. Compression is made with chirped mirrors; input and output chirp (GDD) are determined by optimizing the pulse durations (AC, autocorrelation) with dispersive glass blocks.

Fig. 2.
Fig. 2.

Chirp transfer. (a) Measured input pulse energy required for maintaining a constant broadening, i.e., Fourier limit of 17fs. (b) Fourier limit of the output spectrum for increasing input chirp and pulse energy. (c) Measured output chirp originating from the nonlinearity (i.e., with linear fiber dispersion subtracted) for different values of the input chirp. The dashed line is the result of a model based on considering self-phase modulation at an approximately constant pulse duration within the fiber. Dots and diamonds denote two different sets of measurements.

Fig. 3.
Fig. 3.

Chirp reduction, plotted as the ratio of nonlinearity-induced output chirp to input chirp. The dashed line is a one-parameter fit of Eq. (6) and corresponds to the dashed line in Fig. 2(c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(t)=I0exp(4(ln2)t2/τin2)I0(14(ln2)t2/τin2).
τin(Din)τ01+(4ln2)2Din2/τ04.
ω(t)=ω016(ln2)2Dinτ04+(4ln2)2(Din)2t2πλ0n2LdI(t)dt,
ω(t)ω02πλ0n2LdI(t)dt.
ω(t)ω0+16π(ln2)n2LI0λ0τ(Din)2tω0+t/Dout.
Doutλ0τ(Din)216π(ln2)n2I0L.

Metrics