Abstract

We experimentally demonstrated a free spectrum range (FSR) tunable comb filter based on a programmable thermo-controlled Mach–Zehnder interferometer. The device is constructed by sandwiching a length of ethanol-filled photonic crystal fiber between single-mode fibers. A digital thermal printer head is used to facilitate the interference as well as to adjust the phase difference by selectively activating the independent heating elements, thus the FSR can be digitally tuned conveniently. The filter shows a feature of periodic equalized passbands with flat-top steep-edge as well as a high extinction ratio over a very wide range of wavelengths from 1.52 to 1.58 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Ai-Ping Luo, Zhi-Chao Luo, Wen-Cheng Xu, and Hu Cui
Opt. Express 18(6) 6056-6063 (2010)

Semi-open cavity in-fiber Mach–Zehnder interferometer for temperature measurement with ultra-high sensitivity

Ai Zhou, Yaxun Zhang, Quan Xu, Jun Yang, and Libo Yuan
Appl. Opt. 53(12) 2696-2701 (2014)

Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber

Bo-Yan Ho, Hsien-Pin Su, Yu-Pei Tseng, Shin-Tson Wu, and Shug-June Hwang
Opt. Express 23(26) 33588-33596 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription