Abstract

When a chalcogenide–tellurite hybrid optical fiber with a high refractive index difference Δn=0.24 is pumped by an optical parametric oscillator with a pump wavelength from 1700 to 3000 nm, widely tunable second-harmonic generation (SHG) from 850 to 1502 nm is obtained. The observation of SHG is primarily due to the surface nonlinearity polarization at the core–cladding interface and the second-harmonic signal remains stable at the maximal level throughout the laser pulse irradiation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Chestnut, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 88, 071113 (2006).
    [CrossRef]
  2. I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
    [CrossRef]
  3. E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, J. Opt. Soc. Am. B 27, 2410 (2010).
    [CrossRef]
  4. S. S. Pal, S. K. Mondal, P. P. Bajpai, and P. Kapur, Opt. Lett. 37, 4017 (2012).
    [CrossRef]
  5. Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Opt. Lett. 5, 48 (1980).
    [CrossRef]
  6. Y. Sasaki and Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
    [CrossRef]
  7. U. Österberg and W. Margulis, Opt. Lett. 11, 516 (1986).
    [CrossRef]
  8. U. Österberg and W. Margulis, Opt. Lett. 12, 57 (1987).
    [CrossRef]
  9. M. C. Farries, P. S. J. Russel, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322 (1987).
    [CrossRef]
  10. B. Valk, E. M. Kim, and M. M. Salour, Appl. Phys. Lett. 51, 722 (1987).
    [CrossRef]
  11. R. H. Stolen and H. W. K. Tom, Opt. Lett. 12, 585 (1987).
    [CrossRef]
  12. R. W. Terhune and D. A. Weinberger, J. Opt. Soc. Am. B 4, 661 (1987).
    [CrossRef]
  13. J. M. Gabriagues and H. Février, Opt. Lett. 12, 720 (1987).
    [CrossRef]
  14. S. Richard, J. Opt. Soc. Am. B 27, 1504 (2010).
    [CrossRef]
  15. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Y. A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, Opt. Lett. 34, 2483 (2009).
    [CrossRef]
  16. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, Opt. Lett. 16, 1732 (1991).
    [CrossRef]
  17. W. Luo, W. Guo, F. Xu, and Y. Lu, Opt. Express 21, 11554 (2013).
    [CrossRef]
  18. M. A. Saifi and M. J. Andrejco, Opt. Lett. 13, 773 (1988).
    [CrossRef]
  19. D. Z. Anderson, V. Mizrahi, and J. E. Sipe, Opt. Lett. 16, 796 (1991).
    [CrossRef]
  20. T. E. Tsai, M. A. Saifi, E. J. Friebele, D. L. Griscom, and U. Österberg, Opt. Lett. 14, 1023 (1989).
    [CrossRef]
  21. V. Dominic and J. Feinberg, Phys. Rev. Lett. 71, 3446 (1993).
    [CrossRef]
  22. T. L. Cheng, W. Q. Gao, M. S. Liao, Z. C. Duan, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Opt. Lett. 39, 1005 (2014).
    [CrossRef]

2014

2013

2012

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
[CrossRef]

S. S. Pal, S. K. Mondal, P. P. Bajpai, and P. Kapur, Opt. Lett. 37, 4017 (2012).
[CrossRef]

2010

2009

2006

D. A. Chestnut, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 88, 071113 (2006).
[CrossRef]

1993

V. Dominic and J. Feinberg, Phys. Rev. Lett. 71, 3446 (1993).
[CrossRef]

1991

1989

1988

1987

1986

1981

Y. Sasaki and Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

1980

Agrawal, A.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
[CrossRef]

Anderson, D. Z.

Andrejco, M. J.

Bajpai, P. P.

Brueck, S. R. J.

Canagasabey, A.

Cheng, T. L.

Chestnut, D. A.

D. A. Chestnut, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 88, 071113 (2006).
[CrossRef]

Corbari, C.

Deng, D. H.

Dianov, E. M.

Dominic, V.

V. Dominic and J. Feinberg, Phys. Rev. Lett. 71, 3446 (1993).
[CrossRef]

Duan, Z. C.

Farries, M. C.

M. C. Farries, P. S. J. Russel, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Feinberg, J.

V. Dominic and J. Feinberg, Phys. Rev. Lett. 71, 3446 (1993).
[CrossRef]

Fermann, M. E.

M. C. Farries, P. S. J. Russel, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Février, H.

Friebele, E. J.

Fujii, Y.

Gabriagues, J. M.

Gao, W. Q.

Gladyshev, A. V.

Grattan, K. T. V.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
[CrossRef]

Griscom, D. L.

Guillemet, S.

Guo, W.

Helt, L. G.

Hernandez, Y.

Hill, K. O.

Ibsen, M.

Johnson, D. C.

Kapur, P.

Kawasaki, B. S.

Kazansky, P. G.

Kejalakshmy, N.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
[CrossRef]

Kim, E. M.

B. Valk, E. M. Kim, and M. M. Salour, Appl. Phys. Lett. 51, 722 (1987).
[CrossRef]

Kosolapov, M. V. Y. A.

Liao, M. S.

Liegeois, F.

Liscidini, M.

Lu, Y.

Luo, W.

Margulis, W.

Matsumoto, M.

Misumi, T.

Mizrahi, V.

Mondal, S. K.

Mukherjee, N.

Myers, R. A.

Ohishi, Y.

Ohmori, Y.

Y. Sasaki and Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

Österberg, U.

Pal, S. S.

Payne, D. N.

M. C. Farries, P. S. J. Russel, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Popov, S. V.

D. A. Chestnut, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 88, 071113 (2006).
[CrossRef]

Qian, L.

Rahman, B. M. A.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
[CrossRef]

Richard, S.

Russel, P. S. J.

M. C. Farries, P. S. J. Russel, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Saifi, M. A.

Salour, M. M.

B. Valk, E. M. Kim, and M. M. Salour, Appl. Phys. Lett. 51, 722 (1987).
[CrossRef]

Sasaki, Y.

Y. Sasaki and Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

Sipe, J. E.

Stolen, R. H.

Suzuki, T.

Taylor, J. R.

D. A. Chestnut, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 88, 071113 (2006).
[CrossRef]

Terhune, R. W.

Tom, H. W. K.

Tsai, T. E.

Valk, B.

B. Valk, E. M. Kim, and M. M. Salour, Appl. Phys. Lett. 51, 722 (1987).
[CrossRef]

Weinberger, D. A.

Wijeratne, I. N. M.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
[CrossRef]

Xu, F.

Zhu, E. Y.

Appl. Phys. Lett.

D. A. Chestnut, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 88, 071113 (2006).
[CrossRef]

Y. Sasaki and Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

B. Valk, E. M. Kim, and M. M. Salour, Appl. Phys. Lett. 51, 722 (1987).
[CrossRef]

Electron. Lett.

M. C. Farries, P. S. J. Russel, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

IEEE Photon. J.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, IEEE Photon. J. 4, 357 (2012).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

V. Dominic and J. Feinberg, Phys. Rev. Lett. 71, 3446 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Material refractive indices of GGSS core (red line) and TZLB cladding (black line). (b) Calculated effective refractive indices of the fundamental (red line) and SH modes (black line), and the phase mismatch condition (Δβ) (blue line).

Fig. 2.
Fig. 2.

Experimental setup for observing SHG in the chalcogenide–tellurite hybrid optical fiber.

Fig. 3.
Fig. 3.

Tunable SHG from 850 to 1502 nm in the chalcogenide–tellurite hybrid optical fiber with the pump wavelength adjusted from 1700 to 3000 nm.

Fig. 4.
Fig. 4.

(a) SHG output spectrum intensity at the pump wavelength of 1800nm. The pump peak power from bottom to top corresponding to the average powers were 1.75, 2.63, 3.51, 4.38, 5.25, and 6.48 kW. (b) Log–log plot of the SHG output average power versus the average power from 100 to 370 mW.

Fig. 5.
Fig. 5.

(a) GGSS rod with a diameter of 0.26 mm and length of 5 cm pumped by 1800 nm pulses. (b) Fiber preform with GGSS core diameter of 0.25 mm and length of 5 cm pumped by 1800 nm pulses.

Fig. 6.
Fig. 6.

SHG average power measured over 16 min of laser pulse irradiation in a 2.5-cm-long chalcogenide–tellurite hybrid optical fiber.

Metrics