Abstract

We report a passively mode-locked Ho3+Pr3+-doped fluoride fiber laser, producing 6 ps pulses at a repetition rate of 24.8 MHz, with a peak power of 465 W. For the first time, a ring cavity was demonstrated in a fluoride fiber laser arrangement which was essential to the generation of stable and self-starting mode-locked pulses.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Boulnois, Lasers Med. Sci. 1, 47 (1986).
    [CrossRef]
  2. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
    [CrossRef]
  3. M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, Opt. Lett. 36, 1923 (2011).
    [CrossRef]
  4. T. Hu, D. D. Hudson, and S. D. Jackson, Opt. Lett. 37, 2145 (2012).
    [CrossRef]
  5. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 36, 2812 (2011).
    [CrossRef]
  6. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, Opt. Lett. 37, 3849 (2012).
    [CrossRef]
  7. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, Opt. Lett. 37, 3747 (2012).
    [CrossRef]
  8. D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011).
    [CrossRef]
  9. M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 7, 30 (2001).
    [CrossRef]
  10. G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
    [CrossRef]
  11. F. Gan, J. Non-Cryst. Solids 184, 9 (1995).
    [CrossRef]
  12. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
    [CrossRef]
  13. J. Li, L. Gomes, and S. D. Jackson, IEEE J. Quantum Electron. 48, 506 (2011).
  14. Q. Wang, J. Geng, T. Luo, and S. Jiang, Opt. Lett. 34, 3616 (2009).
    [CrossRef]
  15. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, Opt. Lett. 21, 881 (1996).
    [CrossRef]
  16. C. Frerichs and U. B. Unrau, Opt. Fiber Technol. 2, 358 (1996).
    [CrossRef]

2012

2011

M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, Opt. Lett. 36, 1923 (2011).
[CrossRef]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 36, 2812 (2011).
[CrossRef]

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

J. Li, L. Gomes, and S. D. Jackson, IEEE J. Quantum Electron. 48, 506 (2011).

2010

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

2009

2006

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

2001

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 7, 30 (2001).
[CrossRef]

1999

1996

R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, Opt. Lett. 21, 881 (1996).
[CrossRef]

C. Frerichs and U. B. Unrau, Opt. Fiber Technol. 2, 358 (1996).
[CrossRef]

1995

F. Gan, J. Non-Cryst. Solids 184, 9 (1995).
[CrossRef]

1986

J. L. Boulnois, Lasers Med. Sci. 1, 47 (1986).
[CrossRef]

Alman, B. A.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Amini-Nik, S.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Boulnois, J. L.

J. L. Boulnois, Lasers Med. Sci. 1, 47 (1986).
[CrossRef]

Cerullo, G.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Chiodo, N.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Copic, M.

Cowan, M. L.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Elliot, J.

Ferrari, A. C.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Frerichs, C.

C. Frerichs and U. B. Unrau, Opt. Fiber Technol. 2, 358 (1996).
[CrossRef]

Galzerano, G.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Gan, F.

F. Gan, J. Non-Cryst. Solids 184, 9 (1995).
[CrossRef]

Geng, J.

Gomes, L.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

J. Li, L. Gomes, and S. D. Jackson, IEEE J. Quantum Electron. 48, 506 (2011).

Gorjan, M.

Gunaratne, K.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Hashida, M.

Hönninger, C.

Hu, T.

Hudson, D.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

Hudson, D. D.

Jackson, S. D.

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, Opt. Lett. 37, 3747 (2012).
[CrossRef]

T. Hu, D. D. Hudson, and S. D. Jackson, Opt. Lett. 37, 2145 (2012).
[CrossRef]

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

J. Li, L. Gomes, and S. D. Jackson, IEEE J. Quantum Electron. 48, 506 (2011).

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 7, 30 (2001).
[CrossRef]

Jiang, S.

Keller, U.

Kraemer, D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Laporta, P.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Li, J.

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, Opt. Lett. 37, 3747 (2012).
[CrossRef]

J. Li, L. Gomes, and S. D. Jackson, IEEE J. Quantum Electron. 48, 506 (2011).

Liu, Y.

Luo, T.

Magi, E.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

Marincek, M.

Miller, R. J. D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Morgner, U.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Murakami, M.

Nadesan, P.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Norwood, R. A.

Osellame, R.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Pan, N.

Paschotta, R.

Petkovšek, R.

Peyghambarian, N.

Pollnau, M.

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 7, 30 (2001).
[CrossRef]

Rozhin, A. G.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Sakabe, S.

Scardaci, V.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Sharp, R. C.

Shimizu, S.

Spock, D. E.

Svelto, O.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Tokita, S.

Unrau, U. B.

C. Frerichs and U. B. Unrau, Opt. Fiber Technol. 2, 358 (1996).
[CrossRef]

Valle, G. D.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Wang, Q.

Wei, C.

Zhu, X.

Appl. Phys. Lett.

G. D. Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, Appl. Phys. Lett. 89, 231115 (2006).
[CrossRef]

Electron. Lett.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011).
[CrossRef]

IEEE J. Quantum Electron.

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 7, 30 (2001).
[CrossRef]

J. Li, L. Gomes, and S. D. Jackson, IEEE J. Quantum Electron. 48, 506 (2011).

J. Non-Cryst. Solids

F. Gan, J. Non-Cryst. Solids 184, 9 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Lasers Med. Sci.

J. L. Boulnois, Lasers Med. Sci. 1, 47 (1986).
[CrossRef]

Opt. Fiber Technol.

C. Frerichs and U. B. Unrau, Opt. Fiber Technol. 2, 358 (1996).
[CrossRef]

Opt. Lett.

PloS ONE

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, PloS ONE 5, e13053 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the passively mode-locked Ho3+Pr3+-doped ring laser. The isolator set the anticlockwise operation, and the InAs saturable absorber placed in a confocal arrangement provided the saturable absorption.

Fig. 2.
Fig. 2.

Optical spectrum of a cw ring laser (lower, blue) with a width of 0.2 nm and the spectrum when mode-locked (upper, red), having a significantly broadened spectrum of 5 nm.

Fig. 3.
Fig. 3.

Temporal profiles of two operating regimes of the ring laser. (a) Q-switched mode-locked; (b) cw mode-locked pulses, and the inset shows a single pulse (resolution limited by detector setup).

Fig. 4.
Fig. 4.

RF (rf) beat spectrum of the mode-locked pulses centered at 24.8 MHz, spanning 100 kHz. The SNR measured was 73 dB (resolution bandwidth of 1 kHz), typical of stable mode-locked lasers.

Fig. 5.
Fig. 5.

(Left) Schematic for the Mach–Zehnder autocorrelator based on two photon absorption in InGaAs. (Right) Measured autocorrelation (black) with fitted curve (smooth red), giving a pulse width of 6 ps.

Fig. 6.
Fig. 6.

Variation of the laser output power (red, right vertical axis) as it changes from a Q-switch mode-locked regime (shaded) to a cw mode-locked regime (unshaded). The transition occurs at a launched pump power of 1.25 W, where the Q-switching repetition rate drops to zero (blue).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Eth2=Esat,gEsat,aΔR,

Metrics