Abstract

We demonstrated a high-sensitivity strain sensor based on an in-fiber Fabry–Perot interferometer (FPI) with an air cavity, which was created by splicing together two sections of standard single-mode fibers. The sensitivity of this strain sensor was enhanced to 6.0pm/με by improving the cavity length of the FPI by means of repeating arc discharges for reshaping the air cavity. Moreover, such a strain sensor has a very low temperature sensitivity of 1.1pm/°C, which reduces the cross sensitivity between tensile strain and temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Zhu, D. Wu, M. Liu, and D. W. Duan, Sensors 12, 10430 (2012).
    [CrossRef]
  2. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
    [CrossRef]
  3. Y. Wang, D. Wang, C. Liao, T. Hu, J. Guo, and H. Wei, Opt. Lett. 38, 269 (2013).
    [CrossRef]
  4. D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
    [CrossRef]
  5. C. Liao, T. Hu, and D. Wang, Opt. Express 20, 22813 (2012).
    [CrossRef]
  6. C. Liao, D. Wang, and Y. Wang, Opt. Lett. 38, 757 (2013).
    [CrossRef]
  7. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazao, Opt. Express 20, 21946 (2012).
    [CrossRef]
  8. F. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Express 20, 7112 (2012).
    [CrossRef]
  9. D.-W. Duan, Y.-j. Rao, Y.-S. Hou, and T. Zhu, Appl. Opt. 51, 1033 (2012).
    [CrossRef]
  10. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009).
    [CrossRef]
  11. E. Cibula and D. Donlagic, Opt. Express 15, 8719 (2007).
    [CrossRef]
  12. Y. P. Wang, D. Wang, W. Jin, and X. H. Fang, IEEE J. Quantum Electron. 42, 868 (2006).
  13. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, Appl. Opt. 45, 7760 (2006).
    [CrossRef]
  14. Y. Wang, D. Wang, C. Wang, and T. Hu, Opt. Express 21, 14084 (2013).
    [CrossRef]
  15. J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).
  16. C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, Opt. Lett. 38, 4473 (2013).
    [CrossRef]
  17. Y. Wang, W. Jin, and D. Wang, Opt. Lasers Eng. 47, 1044 (2009).

2013 (5)

2012 (6)

2011 (1)

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).

2009 (2)

Y. Wang, W. Jin, and D. Wang, Opt. Lasers Eng. 47, 1044 (2009).

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009).
[CrossRef]

2007 (1)

2006 (2)

Y. P. Wang, D. Wang, W. Jin, and X. H. Fang, IEEE J. Quantum Electron. 42, 868 (2006).

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, Appl. Opt. 45, 7760 (2006).
[CrossRef]

Araujo, L.

Bierlich, J.

Bouwmans, G.

Chen, X.

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Cibula, E.

Coviello, G.

Donlagic, D.

Duan, D. W.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, Sensors 12, 10430 (2012).
[CrossRef]

Duan, D.-W.

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Estudillo Ayala, J. M.

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

Fang, X. H.

Y. P. Wang, D. Wang, W. Jin, and X. H. Fang, IEEE J. Quantum Electron. 42, 868 (2006).

Favero, F.

Ferreira, M. S.

Finazzi, V.

Frazao, O.

Guo, J.

Hernández García, J. C.

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

Hou, Y.-S.

Hu, T.

Huang, Z.

Jáuregui Vázquez, D.

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

Jin, L.

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).

Jin, W.

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).

Y. Wang, W. Jin, and D. Wang, Opt. Lasers Eng. 47, 1044 (2009).

Y. P. Wang, D. Wang, W. Jin, and X. H. Fang, IEEE J. Quantum Electron. 42, 868 (2006).

Ju, J.

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Kobelke, J.

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Li, Z.

Liao, C.

Liu, M.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, Sensors 12, 10430 (2012).
[CrossRef]

Liu, Y.

Ma, J.

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).

Mata Chávez, R. I.

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Pruneri, V.

Rao, Y.-j.

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Rojas Laguna, R.

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

Santos, J. L.

Schuster, K.

Shen, F.

Sierra Hernández, J. M.

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

Vargas Rodríguez, E.

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

Villatoro, J.

Wang, A.

Wang, C.

Wang, D.

Wang, D. N.

Wang, Q.

Wang, Y.

Wang, Y. P.

Y. P. Wang, D. Wang, W. Jin, and X. H. Fang, IEEE J. Quantum Electron. 42, 868 (2006).

Wang, Z.

Wei, H.

Wu, D.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, Sensors 12, 10430 (2012).
[CrossRef]

Xu, L.

Yang, K.

Zhong, X.

Zhou, J.

Zhu, T.

D.-W. Duan, Y.-j. Rao, Y.-S. Hou, and T. Zhu, Appl. Opt. 51, 1033 (2012).
[CrossRef]

T. Zhu, D. Wu, M. Liu, and D. W. Duan, Sensors 12, 10430 (2012).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

Y. P. Wang, D. Wang, W. Jin, and X. H. Fang, IEEE J. Quantum Electron. 42, 868 (2006).

IEEE Photon. Technol. Lett. (1)

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).

Opt. Express (5)

Opt. Lasers Eng. (1)

Y. Wang, W. Jin, and D. Wang, Opt. Lasers Eng. 47, 1044 (2009).

Opt. Lett. (4)

Sensors (3)

D. Jáuregui Vázquez, J. M. Estudillo Ayala, R. Rojas Laguna, E. Vargas Rodríguez, J. M. Sierra Hernández, J. C. Hernández García, and R. I. Mata Chávez, Sensors 13, 6355 (2013).
[CrossRef]

T. Zhu, D. Wu, M. Liu, and D. W. Duan, Sensors 12, 10430 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagrams of fabrication process of in-fiber FPI based on an air bubble.

Fig. 2.
Fig. 2.

(a), (b), (c), (d), and (e) Microscope images of the created air bubble with a cavity length of 79, 70, 58, 54, and 46 μm, respectively; (f)–(j) the corresponding reflection spectra of the air-cavity-based FPI. FSR, free spectra range; ER, extinction ratio.

Fig. 3.
Fig. 3.

Insertion loss of the air bubble with a cavity length of 79, 70, 58, 54, and 46 μm.

Fig. 4.
Fig. 4.

Measured and calculated FSR of interference fringes of the in-fiber air-cavity-based FPI with different cavity lengths of 46, 54, 58, 70, and 79 μm.

Fig. 5.
Fig. 5.

(a) Wavelength shift of the interference fringe around 1545 nm as a function of tensile strain applied to the air-cavity-based FPI sample with different cavity length of (ol-39-7-2121-i001) 79 μm, (ol-39-7-2121-i002) 70 μm, (ol-39-7-2121-i003) 58 μm, (ol-39-7-2121-i004) 54 μm, and (ol-39-7-2121-i005) 46 μm. (b) Reflection spectrum evolution of the air-cavity-based FPI sample with a cavity length of 46 μm while the tensile strain increases from 0 to 1000με.

Fig. 6.
Fig. 6.

Temperature response of the dip wavelength in the reflection spectrum of the air-cavity-based FPI sample with a cavity length of 46 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cos(γ),
FSR=λ2/(2nLB),

Metrics