Abstract

We report on a photonic crystal slab patterned on a 690 nm thick LiNbO3 thin film bonded to SiO2 on lithium niobate substrate. The transmission spectrum is measured and a broad and clear photonic bandgap ranging from 1335 to 1535 nm with a maximum extinction ratio of more than 20 dB is observed. The bandgap is simulated by plane wave expansion and 3D finite-difference time-domain methods. Such a deep and broad bandgap structure can be used to form high-performance photonic devices and circuits on the platform of lithium niobate-on-insulator.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
    [CrossRef]
  3. O. Sigmund and K. Hougaard, Phys. Rev. Lett. 100, 153904 (2008).
    [CrossRef]
  4. J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 124 (2004).
    [CrossRef]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
    [CrossRef]
  6. L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
    [CrossRef]
  7. P. Rabiei and W. H. Steier, Appl. Phys. Lett. 86, 161115 (2005).
    [CrossRef]
  8. M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, Opt. Express 21, 28809 (2013).
    [CrossRef]
  9. H. Hu, R. Ricken, and W. Sohler, Opt. Express 17, 24261 (2009).
    [CrossRef]
  10. L. J. Yuan and Y. Y. Lu, Opt. Express 21, 11952 (2013).
    [CrossRef]
  11. R. Letizia and S. S. A. Obayya, J. Lightwave Technol. 27, 4763 (2009).
    [CrossRef]
  12. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, Opt. Express 17, 20291 (2009).
    [CrossRef]
  13. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, Opt. Express 20, 2974 (2012).
    [CrossRef]
  14. A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, J. Opt. Soc. Am. B 18, 1832 (2001).
    [CrossRef]
  15. G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photonics Rev. 6, 488 (2012).
    [CrossRef]
  16. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
    [CrossRef]
  17. N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, Opt. Express 19, 23008 (2011).
    [CrossRef]
  18. A. Plößl and G. Kräuter, Mater. Sci. Eng. R 25, 1 (1999).
    [CrossRef]
  19. G. W. Burr, S. Diziain, and M.-P. Bernal, Opt. Express 16, 6302 (2008).
    [CrossRef]

2013 (2)

2012 (2)

2011 (1)

2009 (3)

2008 (2)

G. W. Burr, S. Diziain, and M.-P. Bernal, Opt. Express 16, 6302 (2008).
[CrossRef]

O. Sigmund and K. Hougaard, Phys. Rev. Lett. 100, 153904 (2008).
[CrossRef]

2006 (1)

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

2005 (2)

P. Rabiei and W. H. Steier, Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

2004 (1)

J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 124 (2004).
[CrossRef]

2001 (1)

1999 (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

A. Plößl and G. Kräuter, Mater. Sci. Eng. R 25, 1 (1999).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

1987 (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef]

Ahlawat, M.

Baida, F.

Baida, F. I.

Bernal, M.-P.

Bostani, A.

Boudrioua, A.

Burr, G. W.

Chang, J.-Y.

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

Chang, L.-M.

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

Chen, C.-C.

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

Collet, M.

Courjal, N.

Dahdah, J.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Diziain, S.

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

Guichardaz, B.

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photonics Rev. 6, 488 (2012).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, Opt. Express 17, 20291 (2009).
[CrossRef]

Hou, C.-H.

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

Hougaard, K.

O. Sigmund and K. Hougaard, Phys. Rev. Lett. 100, 153904 (2008).
[CrossRef]

Hsu, C.-L.

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photonics Rev. 6, 488 (2012).
[CrossRef]

H. Hu, R. Ricken, and W. Sohler, Opt. Express 17, 24261 (2009).
[CrossRef]

Jiang, H. X.

J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 124 (2004).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

Kashyap, R.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Kim, K. H.

J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 124 (2004).
[CrossRef]

Koechlin, M.

Kräuter, G.

A. Plößl and G. Kräuter, Mater. Sci. Eng. R 25, 1 (1999).
[CrossRef]

Laurell, F.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Letizia, R.

Lin, J. Y.

J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 124 (2004).
[CrossRef]

Loulergue, J. C.

Lu, H.

Lu, Y. Y.

Moretti, P.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Obayya, S. S. A.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Plößl, A.

A. Plößl and G. Kräuter, Mater. Sci. Eng. R 25, 1 (1999).
[CrossRef]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photonics Rev. 6, 488 (2012).
[CrossRef]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, Opt. Express 17, 20291 (2009).
[CrossRef]

Rabiei, P.

P. Rabiei and W. H. Steier, Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

Ricken, R.

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Sadani, B.

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Sevillano, P.

Shakya, J.

J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 124 (2004).
[CrossRef]

Sigmund, O.

O. Sigmund and K. Hougaard, Phys. Rev. Lett. 100, 153904 (2008).
[CrossRef]

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photonics Rev. 6, 488 (2012).
[CrossRef]

H. Hu, R. Ricken, and W. Sohler, Opt. Express 17, 24261 (2009).
[CrossRef]

Steier, W. H.

P. Rabiei and W. H. Steier, Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

Stenger, V.

Sulser, F.

Tehranchi, A.

Ting, Y.-C.

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

Ulliac, G.

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Yuan, L. J.

Appl. Phys. Lett. (4)

J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 124 (2004).
[CrossRef]

L.-M. Chang, C.-H. Hou, Y.-C. Ting, C.-C. Chen, C.-L. Hsu, and J.-Y. Chang, Appl. Phys. Lett. 89, 071116 (2006).
[CrossRef]

P. Rabiei and W. H. Steier, Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photonics Rev. 6, 488 (2012).
[CrossRef]

Mater. Sci. Eng. R (1)

A. Plößl and G. Kräuter, Mater. Sci. Eng. R 25, 1 (1999).
[CrossRef]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

Opt. Express (7)

Phys. Rev. Lett. (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef]

O. Sigmund and K. Hougaard, Phys. Rev. Lett. 100, 153904 (2008).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the fabricated device with a=520nm, r=0.25a, h1=690nm, h2=1.2μm, h3=0.5mm. (b) The SEM image of the hexagonal lattice of air holes on a 690 nm thick LN ridge waveguide fabricated by FIB milling. The lattice constant and diameter of holes are set to be 520 and 260 nm, respectively. The inset shows the cross section of the air holes. Air holes are etched into the SiO2 to reduce the redeposition effect in the LN film.

Fig. 2.
Fig. 2.

Photonic band diagram (a) for all z-even-like modes in the ΓK direction (b) for guided z-even-like modes in the irreducible Brillouin zone of LN PC slab structure which is shown in Fig. 1. A PBG (light blue area) appears ranging from 1340 to 1560 nm in the ΓK direction.

Fig. 3.
Fig. 3.

(a) Simulated transmission spectra with different lattice constant of holes: 510 (black line), 520 (red line), and 530 nm (green line). The radius and number of rows in all three cases are 0.25a and 12, respectively. (b) Simulated transmission spectra with different radius of holes: 0.23a (black line), 0.25a (red line), and 0.27a (green line). The lattice constant of holes and number of rows in all three cases are 520 nm and 12, respectively. (c) Simulated transmission spectra with different numbers of rows: 6 (black line), 9 (red line), 12 (green line), 15 (blue line), and 18 (orange line). The lattice constant and radius of holes in all five cases are 520 nm and 0.25a, respectively. (d) Measured (black line) and simulated (red line) transmission spectra of LN PCs with the same pattern as shown in Fig. 1. Low transmission occurs in the range of 1335–1535 nm in the experiment. Considering the fabrication errors various parameters are adjusted, and the simulated curve with a=515nm and r=0.26a has the same band edge and similar shape as that in the measurement.

Metrics