Abstract

A novel and efficient architecture of a structured-illumination digital holographic microscope (DHM) is presented. As the DHM operates at the diffraction limit, its spatial resolution on label-free imaging of transparent samples is improved by illuminating the sample with a structured illumination produced by a Fresnel’s biprism. The theoretical analysis of the method forecasts a twofold improvement of the spatial resolution. The proposed method requires only two images to improve the spatial resolution, which eases the process of unmixing the high-resolution components by means of an unknown phase-shift procedure. Numerical modeling and experimental results validate the theoretical findings.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
    [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).
  3. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  4. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, Opt. Express 18, 14159 (2010).
    [CrossRef]
  5. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, Opt. Lett. 31, 1211 (2006).
    [CrossRef]
  6. C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, Appl. Opt. 50, B6 (2011).
    [CrossRef]
  7. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, Opt. Express 16, 19260 (2008).
    [CrossRef]
  8. P. Gao, G. Pedrini, and W. Osten, Opt. Lett. 38, 1328 (2013).
    [CrossRef]
  9. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef]
  10. M. G. L. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
    [CrossRef]
  11. S. Chowdhury and J. Izatt, Biomed. Opt. Express 4, 1795 (2013).
    [CrossRef]
  12. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, P. Andrés, and J. Garcia-Sucerquia, Opt. Lett. 38, 1352 (2013).
    [CrossRef]
  13. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
    [CrossRef]

2013

2011

2010

2008

2006

2005

M. G. L. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
[CrossRef]

2000

1999

Andrés, P.

Bevilacqua, F.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Chowdhury, S.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Cuche, E.

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
[CrossRef]

Doblas, A.

Eigenthaler, U.

Faridian, A.

Ferreira, C.

Gao, P.

García, J.

Garcia-Sucerquia, J.

Gustafsson, M. G. L.

M. G. L. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
[CrossRef]

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Hirscher, M.

Hopp, D.

Izatt, J.

Jericho, M. H.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Kreuzer, H. J.

Ma, J.

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
[CrossRef]

Martínez-Corral, M.

Mico, V.

Osten, W.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Pedrini, G.

Saavedra, G.

Sánchez-Ortiga, E.

Situ, G.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Xu, W.

Yuan, C.

Zalevsky, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the biprism structured illumination DHM (SI-DHM).

Fig. 2.
Fig. 2.

Numerical modeling for testing the resolution enhancement in QPM via SI-DHM. Panels (a) and (b) are the CTFs for regular- and SI-DHM, respectively, whereas (c) and (d) are the corresponding quantitative phase images. The white rectangles show the highest resolved elements.

Fig. 3.
Fig. 3.

Experimental one-direction SI-DHM. Panel (a) shows the one direction synthetic CTF. Panel (b) is the contrast-amplitude reconstructed image. The colored ellipses remark the smallest resolved elements along each direction.

Fig. 4.
Fig. 4.

Regular DHM versus SI-DHM, amplitude. Panel (a)/(b) shows the CTF for regular DHM/SI-DHM. Panel (c)/(d) is the amplitude-contrast image of a section of the head of a drosophila melanogaster fly for regular DHM/SI-DHM.

Fig. 5.
Fig. 5.

Regular DHM versus SI-DHM, phase. Phase-contrast images of a section of the head of a drosophila melanogaster fly for regular DHM (a) and SI-DHM (b).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(x)=|Oz(x)|2+|R(x)|2+Oz*(x)R(x)+Oz(x)R*(x),
O(x)={O(x/M)cos(2πf·x/M+(ϕj+ϕ0))}2h(x).
I˜(k)=DC(k)+O˜z*(k)δ(kα)+O˜z(k)δ(k+α),
U˜jR(k)=12{O˜(Mk)(exp[i(ϕj+ϕ0)]δ(kMf)+exp[i(ϕj+ϕ0)]δ(k+Mf))}H(k),
F1(k)=(U˜1R(k)exp[j(ϕ/2ϕ0)]U˜2R(k))/cos(ϕ/2)F2(k)=(U˜2R(k)exp[j(ϕ/2+ϕ0)]U˜1R(k))/cos(ϕ/2).
F(k)=F1Wδ(k+Mf)+F2Wδ(kMf).
F(k)=s=1SF1,sWδ(k+Mfs)+F2,sWδ(kMfs),
F(k)=O˜(Mk)s=1S(H(k+Mfs)+H(kMfs)).
Hsynth(k)=s=1S{H(k+Mfs)+H(kMfs)}.

Metrics