Abstract

We demonstrate a 3 GHz repetition rate, femtosecond Raman soliton source with its wavelength tunable from 1.15 to 1.35 μm. We investigate the dependence of Raman soliton formation on different photonic-crystal fibers (PCFs), input powers, and fiber lengths. To produce a Raman soliton peaking at the same wavelength, shorter PCFs demand higher input average powers and consequently generate stronger Raman soliton pulses. Using 30 cm PCF NL-3.2-945, the resulting Raman soliton pulse at 1.35 μm has 0.9 W average power. The integrated relative intensity noise of the Raman soliton pulse at 1.35 μm generated from the 54-cm PCF NL-3.2-945 is as low as 0.33% from 100 Hz to 10 MHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bartels, D. Heinecke, and S. A. Diddams, Opt. Lett. 33, 1905 (2008).
    [CrossRef]
  2. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, Opt. Lett. 37, 3522 (2012).
    [CrossRef]
  3. M. Endo, A. Ozawa, and Y. Kobayashi, Opt. Express 20, 12191 (2012).
    [CrossRef]
  4. S. Pekarek, A. Klenner, T. Sudmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, Opt. Express 20, 4248 (2012).
    [CrossRef]
  5. A. A. Lagatsky, A. Choudhary, P. Kannan, D. P. Shepherd, W. Sibbett, and C. T. A. Brown, Opt. Express 21, 19608 (2013).
    [CrossRef]
  6. J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proceedings of the 16th International Conference, Ultrafast Phenomena XIV, Lago Maggiore, Italy, 2008.
  7. R. R. Anderson and J. A. Parrish, J. Invest. Dermatol. 77, 13 (1981).
    [CrossRef]
  8. N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
    [CrossRef]
  9. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popovic, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Luszczarz, E. P. Ippen, and F. X. Kärtner, Opt. Express 20, 4454 (2012).
    [CrossRef]
  10. H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Q. Chang, Opt. Lett. 38, 4927 (2013).
    [CrossRef]
  11. H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Q. Chang, Opt. Express 20, 28672 (2012).
    [CrossRef]
  12. J. Lim, H.-W. Chen, G. Chang, and F. X. Kärtner, Opt. Express 21, 4531 (2013).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  14. J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
    [CrossRef]
  15. H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
    [CrossRef]
  16. A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, Opt. Lett. 34, 851 (2009).
    [CrossRef]
  17. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, IEEE Photon. Technol. Lett. 18, 2284 (2006).
    [CrossRef]
  18. M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
    [CrossRef]
  19. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef]
  20. A. A. Voronin and A. M. Zheltikov, Opt. Lett. 33, 1723 (2008).
    [CrossRef]
  21. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, J. Opt. Soc. Am. B 27, 1894 (2010).
    [CrossRef]
  22. A. Bendahmane, O. Vanvincq, A. Mussot, and A. Kudlinski, Opt. Lett. 38, 3390 (2013).
    [CrossRef]
  23. X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
    [CrossRef]

2013 (5)

2012 (5)

2010 (1)

2009 (1)

2008 (5)

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

A. A. Voronin and A. M. Zheltikov, Opt. Lett. 33, 1723 (2008).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, Opt. Lett. 33, 1905 (2008).
[CrossRef]

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[CrossRef]

2006 (1)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, IEEE Photon. Technol. Lett. 18, 2284 (2006).
[CrossRef]

2004 (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[CrossRef]

1986 (1)

1981 (1)

R. R. Anderson and J. A. Parrish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Anderson, R. R.

R. R. Anderson and J. A. Parrish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef]

Bartels, A.

Bendahmane, A.

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Brown, C. T. A.

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[CrossRef]

Byun, H.

Chan, M. C.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Chang, G.

Chang, G. Q.

Chen, H.-W.

Chen, J.

Chia, S. H.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[CrossRef]

Choudhary, A.

Dahlem, M. S.

de Sterke, M.

Diddams, S. A.

DiLello, N. A.

Eggleton, B. J.

Endo, M.

Erbert, G.

Fang, X.-H.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Fedotov, A. B.

Fedotov, I. V.

Fiebig, C.

Geis, M. W.

Gordon, J. P.

Grein, M. E.

Haider, Z.

Heinecke, D.

Ho, M. C.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Holzwarth, C. W.

Howe, J. V.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[CrossRef]

Hoyt, J. L.

Hu, M.-L.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Huang, S.-W.

Ippen, E. P.

Ivanov, A. A.

A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, Opt. Lett. 34, 851 (2009).
[CrossRef]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Jiang, S.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proceedings of the 16th International Conference, Ultrafast Phenomena XIV, Lago Maggiore, Italy, 2008.

Judge, A. C.

Kaertner, F. X.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proceedings of the 16th International Conference, Ultrafast Phenomena XIV, Lago Maggiore, Italy, 2008.

Kannan, P.

Kärtner, F. X.

Keller, U.

Khilo, A.

Klenner, A.

Kobayashi, Y.

Kudlinski, A.

Kuhlmey, B. T.

Lagatsky, A. A.

Lee, J. H.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[CrossRef]

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[CrossRef]

Lim, J.

Liu, B.-W.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Liu, H. L.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Liu, J. Y.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Liu, T. M.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Liu, X.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[CrossRef]

Luo, J.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Luszczarz, T. M.

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Magi, E. C.

Motamedi, A.

Mussot, A.

Nejadmalayeri, A. H.

Nishizawa, N.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, IEEE Photon. Technol. Lett. 18, 2284 (2006).
[CrossRef]

Orcutt, J. S.

Ozawa, A.

Pant, R.

Parrish, J. A.

R. R. Anderson and J. A. Parrish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef]

Paschke, K.

Pekarek, S.

Peng, M. Y.

Perrott, M.

Popovic, M. A.

Ram, R. J.

Sander, M. Y.

Schimpf, D. N.

Shepherd, D. P.

Sibbett, W.

Sickler, J. W.

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proceedings of the 16th International Conference, Ultrafast Phenomena XIV, Lago Maggiore, Italy, 2008.

Smith, H. I.

Sorace-Agaskar, C. M.

Spector, S. J.

Sudmeyer, T.

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, IEEE Photon. Technol. Lett. 18, 2284 (2006).
[CrossRef]

Sun, C. K.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Sun, C.-K.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Sun, J.

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, IEEE Photon. Technol. Lett. 18, 2284 (2006).
[CrossRef]

Tong, W.-J.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Tsai, T. H.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Vanvincq, O.

Voronin, A. A.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, Opt. Lett. 34, 851 (2009).
[CrossRef]

A. A. Voronin and A. M. Zheltikov, Opt. Lett. 33, 1723 (2008).
[CrossRef]

Wang, C.-Y.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Wang, J. P.

Wei, H.-F.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Wise, F. W.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[CrossRef]

Xu, C.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[CrossRef]

Xu, S.

Yang, Z.

Yoon, J. U.

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, IEEE Photon. Technol. Lett. 18, 2284 (2006).
[CrossRef]

Zheltikov, A. M.

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, Opt. Lett. 34, 851 (2009).
[CrossRef]

A. A. Voronin and A. M. Zheltikov, Opt. Lett. 33, 1723 (2008).
[CrossRef]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

Zhou, G.-R.

Electron. Lett. (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, IEEE Photon. Technol. Lett. 18, 2284 (2006).
[CrossRef]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, IEEE Photon. Technol. Lett. 20, 900 (2008).
[CrossRef]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Methods (1)

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Opt. Commun. (1)

X.-H. Fang, M.-L. Hu, B.-W. Liu, C.-Y. Wang, H.-F. Wei, W.-J. Tong, J. Luo, C.-K. Sun, A. A. Voronin, and A. M. Zheltikov, Opt. Commun. 289, 123 (2013).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Other (2)

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proceedings of the 16th International Conference, Ultrafast Phenomena XIV, Lago Maggiore, Italy, 2008.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic experimental setup of the 3 GHz Raman soliton femtosecond source. HWP, half-wave-plate; WDM, wavelength division multiplexer; PBC, polarization beam combiner; YDF, Yb-doped fiber; ISO, isolator; BC, beam combiner; DM, dichroic mirror; LD, laser diode; PBS, polarization beam splitter; TG, transmission grating; PCF, photonic crystal fiber; OF, optical filter.

Fig. 2.
Fig. 2.

Simulation of spectral evolution using GNLSE for three PCFs: (a) NL-3.2-945, (b) NL-3.7-975, and (c) NL-5.0-1040. The input pulse is of Gaussian shape with 110 fs FWHM duration and 333 pJ pulse energy, which corresponds to 1 W average power for a pulse train at 3-GHz repetition-rate.

Fig. 3.
Fig. 3.

Output spectra from three different PCFs: NL-3.2-945 (black), NL-3.7-975 (red), and NL-5.0-1040 (blue). All fibers are 90 cm in length, and the average power coupled into the fibers is 1 W. The spectra are normalized to the Raman soliton peak.

Fig. 4.
Fig. 4.

Raman soliton generation as a function of input power for 87-cm PCF NL-3.2-945. The average power coupled into the PCF is also shown for each spectrum. Inset: autocorrelation trace of the Raman soliton pulse at 1.35 μm. The spectra are normalized to the peak of the first Raman soliton spectrum.

Fig. 5.
Fig. 5.

(a) Peak wavelength of the first Raman soliton as a function of input power for PCF NL-3.2-945 at three different lengths. (b) Average power of the first Raman soliton as a function of the first Raman soliton peak wavelength for PCF NL-3.2-945 at three different lengths.

Fig. 6.
Fig. 6.

RIN and integrated RIN for the 3 GHz Yb-fiber oscillator, power amplifier, and the Raman soliton, respectively. The Raman soliton pulse peaks at 1.35 μm generated by the 54-cm PCF NL-3.2-945.

Tables (1)

Tables Icon

Table 1. Parameters of PCFs Used in Simulationsa

Metrics