Abstract

We observe the coherence of the supercontinuum generated in a nanospike chalcogenide-silica hybrid waveguide pumped at 2 μm. The supercontinuum is shown to be coherent with the pump by interfering it with a doubly resonant optical parametric oscillator (OPO) that is itself coherent with the shared pump laser. This enables coherent locking of the OPO to the optically referenced pump frequency comb, resulting in a composite frequency comb with wavelengths from 1 to 6 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012).
    [CrossRef]
  2. A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
    [CrossRef]
  3. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, Opt. Lett. 36, 1122 (2011).
    [CrossRef]
  4. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, Opt. Lett. 37, 4639 (2012).
    [CrossRef]
  5. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. Russell, Opt. Express 21, 10969 (2013).
    [CrossRef]
  6. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, Opt. Lett. 33, 660 (2008).
    [CrossRef]
  7. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, Opt. Express 20, 24218 (2012).
    [CrossRef]
  8. K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, Opt. Lett. 38, 1191 (2013).
    [CrossRef]
  9. J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, in Lasers, Sources, and Related Photonic Devices (Optical Society of America, 2012), paper AT5A.3.
  10. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, Opt. Express 20, 7046 (2012).
    [CrossRef]
  11. J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
    [CrossRef]

2013 (2)

2012 (5)

2011 (1)

2008 (1)

2002 (1)

Abouraddy, A. F.

Aggarwal, I. D.

Allison, T. K.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012).
[CrossRef]

Bethge, J.

K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, Opt. Lett. 38, 1191 (2013).
[CrossRef]

J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, in Lasers, Sources, and Related Photonic Devices (Optical Society of America, 2012), paper AT5A.3.

Byer, R. L.

Chang, W.

Cingöz, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012).
[CrossRef]

Coen, S.

Coulombier, Q.

Dekker, S. A.

Delfyett, P. J.

Dianov, E. M.

Dudley, J. M.

Eggleton, B. J.

Fermann, M.

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, Opt. Express 20, 7046 (2012).
[CrossRef]

J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, in Lasers, Sources, and Related Photonic Devices (Optical Society of America, 2012), paper AT5A.3.

Fermann, M. E.

Fu, L.

Granzow, N.

Hänsch, T. W.

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Hartl, I.

Hudson, D. D.

Jackson, S. D.

Jiang, J.

Judge, A. C.

Lamont, M. R. E.

Lee, K. F.

Leindecker, N.

Li, E.

Mägi, E. C.

Marandi, A.

Marquez, M. P.

Mohr, C.

K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, Opt. Lett. 38, 1191 (2013).
[CrossRef]

J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, in Lasers, Sources, and Related Photonic Devices (Optical Society of America, 2012), paper AT5A.3.

Nguyen, D.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Piracha, M. U.

Plotnichenko, V. G.

Roelens, M. A. F.

Rudy, C. W.

Ruehl, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012).
[CrossRef]

Russell, P. S.

Sanghera, J. S.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Schmidt, M. A.

Schunemann, P. G.

Shabahang, S.

Shaw, L. B.

Tao, G.

Toupin, P.

Troles, J.

Vodopyanov, K. L.

Wang, L.

Wondraczek, L.

Ye, J.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012).
[CrossRef]

Yeom, D.-I.

Yost, D. C.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012).
[CrossRef]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Nature (1)

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Other (1)

J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, in Lasers, Sources, and Related Photonic Devices (Optical Society of America, 2012), paper AT5A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Illustration of chalcogenide nanospike embedded in silica. Light enters from the tapered side on the left.

Fig. 2.
Fig. 2.

Optical spectrum of nanospike supercontinuum (filled) and OPO (hollow) when set for overlap at 3 μm.

Fig. 3.
Fig. 3.

Measured interference in the radio frequency spectrum of overlapped supercontinuum and dither-locked OPO pulses. The repetition rate is at 98.6 MHz; other peaks are beat frequencies. Different colors correspond to different OPO cavity lengths, which have different wavelengths. The presence of strong beats shows that the supercontinuum is coherent.

Fig. 4.
Fig. 4.

Simulation of optical properties and supercontinuum generation inside the chalcogenide-silica waveguide. (a) Spectral dependence of nonlinear coefficient (dashed purple curve) and group velocity dispersion (solid green curve) within the constant diameter section. The two zero-dispersion wavelengths (ZDWs) are highlighted by the two grey dotted vertical lines. (b) Generated supercontinuum spectrum at different longitudinal positions within the fiber (color scale is the normalized spectrum in decibels). (c) Corresponding degree of first-order coherence (color scale is linear, 1 is full coherence with the pump laser). The region of propagation within the nanospike is indicated by the light grey sections in (b) and (c).

Fig. 5.
Fig. 5.

Simulated spectrum (green curve in front, left axis) and degree of coherence (purple curve behind, right axis) at the output of the chalcogenide-silica waveguide.

Fig. 6.
Fig. 6.

Schematic of optical and electrical signals for phase locking of the doubly resonant OPO. All the resulting frequency combs in the near and mid-IR are coherently locked to the optical reference.

Fig. 7.
Fig. 7.

Plot of the power distribution of the phase-locked beat note between the nanospike supercontinuum and the doubly resonant OPO. The solid curve is the radio-frequency beat, and the dashed curve is the corresponding cumulative phase noise.

Metrics